A proposed zone for testing new technologies could head off the problem.
Radio telescopes are facing a problem. All satellites, whatever their function, use radio waves to transmit information to the surface of the Earth. Just as light pollution can hide a starry night sky, radio transmissions can swamp out the radio waves astronomers use to learn about black holes, newly forming stars, and the evolution of galaxies.
As the radio spectrum continues to get more crowded, users will have to share. This could involve sharing in time, in space, or in frequency. Regardless of the specifics, solutions will need to be tested in a controlled environment. There are early signs of cooperation. The National Science Foundation and SpaceX recently announced an astronomy coordination agreement to benefit radio astronomy.
Working with astronomers, engineers, software and wireless specialists, and with the support of the National Science Foundation, scientists have been leading a series of workshops to develop what a national radio dynamic zone could provide. This zone would be similar to existing radio quiet zones, covering a large area with restrictions on radio transmissions nearby. Unlike a quiet zone, the facility would be outfitted with sensitive spectrum monitors that would allow astronomers, satellite companies, and technology developers to test receivers and transmitters together at large scales. The goal would be to support creative and cooperative uses of the radio spectrum. For example, a zone established near a radio telescope could test schemes to provide broader bandwidth access for both active uses, like cell towers, and passive uses, like radio telescopes.
This is an excerpt from the article, “Radio interference from satellites is threatening astronomy,” by Christopher Gordon De Pree, Christopher R. Anderson, and Mariya Zheleva. Read the entire article here.