Researchers are studying the best way to use pulsars to detect signals from low-frequency gravitational waves, like those from colliding supermassive black holes.
The recent detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) came from two black holes, each about 30 times the mass of our sun, merging into one. Gravitational waves span a wide range of frequencies that require different technologies to detect. A new study from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has shown that low-frequency gravitational waves could soon be detectable by existing radio telescopes.
“Detecting this signal is possible if we are able to monitor a sufficiently large number of pulsars spread across the sky,” said Stephen Taylor, lead author of the paper published this week in The Astrophysical Journal Letters. He is a postdoctoral researcher at NASA’s Jet Propulsion Laboratory, Pasadena, California. “The smoking gun will be seeing the same pattern of deviations in all of them.” Taylor and colleagues at JPL and the California Institute of Technology in Pasadena have been studying the best way to use pulsars to detect signals from low-frequency gravitational waves. Pulsars are highly magnetized neutron stars, the rapidly rotating cores of stars left behind when a massive star explodes as a supernova.
Published by Astronomy Magazine. See more at: http://www.astronomy.com/news/2016/02/pulsar-web-could-detect-gravitational-waves