05/30/2016: National Research Council study reveals the galaxy is under pressure to make stars

Press_2016_MayA new study led by Canadian astronomers provides unprecedented insights into the birth of stars. Using observations from the Green Bank Telescope in West Virginia and the Hawaii-based James Clerk Maxwell Telescope in the United States, astronomers from the National Research Council of Canada (NRC) have discovered that star formation is more regulated by pressure from their surroundings than previously thought.

The birth of stars occurs deep within dense concentrations of interstellar gas and dust—known as cores— when their internal support structure becomes overwhelmed. These cores typically contain several times the mass of the Sun over a region about 10,000 times the size of the Solar System. Cores are deeply embedded within molecular gas clouds which are located throughout our Milky Way Galaxy.

Published by T.  See more at: http://www.edmontonjournal.com/business/cnw/release.html?rkey=20160531C6172&filter=5599

05/23/2016: Science: Nurturing Success From Failure

300ft_after_hi-1200x807On a calm November evening in 1988, the 300 foot radio telescope at Green Bank Observatory collapsed. While the collapse was a huge blow to radio astronomy, it is somewhat surprising that it lasted as long as it did. The radio telescope was proposed in 1960 as a way to fill the observational gap between earlier radio telescopes and telescope arrays such as the VLA, and was intended to operate for about five years. In a way it was meant to nurture success out of failure.

 At the time, the major radio telescope under construction was Green Bank’s 140 foot telescope. This telescope was polar-aligned, and had a tracking mechanism that could follow objects as they moved across the sky. This would allow for high-precision observations of radio objects such as pulsars. Unfortunately the gearing necessary to move such a large telescope was plagued with flaws, and the construction of the telescope faced increasing delays and costs. While the 300-foot telescope was larger, it was also lighter and had limited mobility, making it cheaper and easier to build. It depended upon the rotation of the Earth to bring objects into its view for about 40 seconds before drifting out of range, but that was enough to make good observations of things like pulsar remnants. It was also able to make a survey of the radio sky at a higher precision than ever before. When the 140 foot telescope was finally completed in 1965, it was able to further these discoveries, and even made radio observations of complex molecules in space, opening the door to astrochemistry.

Published by .  See more at: http://www.forbes.com/sites/briankoberlein/2016/05/23/science-nurturing-success-from-failure/#466513113157

5/18/2016: Radio observatory on every campus is RRI’s dream

Bengaluru-based Raman Research Institute (RRI) is aiming at making radio astronomy so easily accessible and exciting to undergraduate science students “that they should be able to reach an observatory even in their pyjamas after dinner”.

To achieve that, the institute is working on a project – a first in India – to see academic institutions open up radio astronomy observatories on their respective campuses to fire up the passion among students who can conduct creative research in this field.

As of now, three Indian Institutes of Technology (IITs), two Indian Institutes of Science Education and Research (IISERs), the Thiruvananthapuram-based Indian Institute of Space Technology (IIST) as well as BITS Pilani in Rajasthan, have evinced interest in joining the RRI project, named Sky Watch Array Network (SWAN).

Published by The Bangalore Mirror.  See more at: http://www.bangaloremirror.com/bangalore/others/Radio-observatory-on-every-campus-is-RRIs-dream/articleshow/52316488.cms

05/10/2016: Virtual Earth-space telescope sheds new light on Milky Way

GBT-cloudyAstronomers have created a virtual Earth-space radio telescope more than 100,000 miles across – a super-high resolution that reveals new details of a quasar and our Milky Way. The researchers were surprised when their Earth-space system revealed a temperature hotter then 10 trillion degrees. “Only this space-Earth system could reveal this temperature, and now we have to figure out how that environment can reach such temperatures,” said RadioAstron scientist Yuri Kovalev. “This result is a significant challenge to our current understanding of quasar jets,” he added.

Using an orbiting radio telescope in conjunction with four ground-based radio telescopes, the team achieved the highest resolution of any astronomical observation ever made. The feat produced a pair of surprises that promise to advance the understanding of quasars, supermassive black holes at the cores of galaxies. The scientists combined the Russian Radio- Astron satellite with the ground-based telescopes to produce a virtual radio telescope. They pointed this system at a quasar called 3C 273, more than two billion light-years from Earth. Quasars like 3C 273 propel huge jets of material outward at speeds nearly that of light. These powerful jets emit radio waves.

Published by .  See more at: http://www.ahmedabadmirror.com/others/scitech/Virtual-Earth-space-telescope-sheds-new-light-on-Milky-Way/articleshow/52193824.cms

04/27/2016: Green Bank Ein Dorf ohne Elektrosmog

Green Bank – A Village without Electric Smog

Aired by ZDF.  See more a: http://www.zdf.de/ZDFmediathek/beitrag/video/2727362/Green-Bank-Ein-Dorf-ohne-Elektrosmog#/beitrag/video/2727362/Green-Bank-Ein-Dorf-ohne-Elektrosmog