2023
GREEN BANK OBSERVATORY
MISSION STATEMENT

Green Bank Observatory enables leading edge research at radio wavelengths by offering telescope, facility, and advanced instrumentation access to the astronomy community as well as to other basic and applied research communities.

With radio astronomy as its foundation, Green Bank Observatory is a world leader in advancing research, innovation, and education.

These are a series of radar images captured at different times on Oct. 9, 2022, of the Didymos and Dimorphos binary asteroid system obtained from radar facilities at NASA Jet Propulsion Laboratory's Goldstone planetary radar in California and the National Science Foundation's Green Bank Observatory in West Virginia. Dimorphos, the smaller of the two asteroids, is circled in green. Didymos is seen as the brighter stripe across the middle. These radar images show the smaller asteroid moving steadily to the right as it orbits the larger asteroid. Credits: NASA/Johns Hopkins APL/JPL/NASA JPL Goldstone Planetary Radar/National Science Foundation’s Green Bank Observatory.
Nestled in the mountains of West Virginia, astronomers search for answers to humanity’s most extraordinary scientific questions.

The Green Bank Observatory is the home of the 100-meter Robert C. Byrd Green Bank Telescope (GBT), the world’s premier single-dish radio telescope. The Observatory campus includes an acclaimed Science Center, machine shop, electronics laboratory, and seven additional radio telescopes, along with a cafeteria and housing. The Observatory’s operations, surrounded by the Allegheny Mountains in Deer Creek Valley, is protected by two complementary radio interference protection zones – the National Radio Quiet Zone and the West Virginia Radio Astronomy Zone – providing significant protection for astronomical observations.

Green Bank is an attractive location for independent research experiments, and serves as the field station for several university-based research teams.

The Observatory machine shop and electronics laboratory have built state-of-the-art components and instruments for telescopes and research facilities around the world. The nearly 2,700-acre site has significant infrastructure which allows for the installation of any instrument that may benefit from the radio quiet location. There is ample space for new projects, a radio frequency test range, and anechoic chamber.

The Observatory’s educational and public outreach programs for learners of all ages, and hands-on research experiences for students and educators, are nationally acclaimed.

Green Bank is a welcoming, creative, and tight-knit community. Our award winning staff come from the surrounding area, across the country, and around the world, and are proud to call this place home.

The Green Bank Observatory, National Radio Astronomy Observatory, and Raytheon Intelligence & Space are designing a high-power, next generation planetary radar system (ngRADAR) for the GBT. A pilot radar transmitter on the GBT combined with the receivers of the Very Long Baseline Array generated the highest resolution, ground-based images of the Moon ever collected (shown here), provided physical characterization of space debris, and detected a near-Earth asteroid more than five times farther away than the Moon.
NASA’S DART MISSION—SUPPORTED BY GBT DATA—SHOWS CHANGED ORBIT OF TARGET ASTEROID

Analysis of data obtained by NASA’s Double Asteroid Redirection Test (DART) investigation team shows the spacecraft’s kinetic impact with its target asteroid, Dimorphos, successfully altered the asteroid’s orbit. This marks the first time that humanity has purposely changed the motion of a celestial object and the first full-scale demonstration of asteroid deflection technology. The Green Bank Telescope’s large collecting area makes it extremely sensitive and a prime receiving station for detecting faint radar echoes.

GBT DATA EXTENDS SETI SEARCH TO EXTRAGALACTIC DISTANCES

The search for technosignatures, signals created by extraterrestrial intelligent life, often focuses on relatively nearby stars in our Milky Way Galaxy. A new approach will review existing data, but rather than looking at single stars, the new technique will instead focus on distant galaxies, galaxy groups and galaxy clusters containing hundreds of billions of stars that could host potentially habitable planets. By placing new limits on the prevalence of very powerful radio transmitters in galaxies and other cosmic objects, a very bright signal created by extraterrestrial intelligence just might be revealed.

FUTURE OF EARTH’S DEFENSE IS GROUND-BASED PLANETARY RADAR

The Next Generation Radar program (ngRadar) is a collaboration between the National Radio Astronomy Observatory (NRAO), Green Bank Observatory (GBO), and Raytheon Intelligence & Space. Together they will create an active radar system for GBO’s 100-meter Green Bank Telescope (GBT) using the latest solid-state technology. Powerful radar systems have a “unique role” to play in planetary defense—“providing protection to the nations of the world from devastating asteroid and comet impacts,” according to the Planetary Science and Astrobiology Decadal Survey 2023-2032. With this radar system the GBT will be able to determine orbits of asteroids that may pose a threat to Earth more precisely and quickly than other methods.
GREEN BANK OBSERVATORY RECEIVES $5.3 MILLION FROM NATIONAL SCIENCE FOUNDATION TO REPAIR GBT'S FOUNDATION

Since the GBT’s completion in 2000, staff perform annual maintenance to ensure the structural integrity of the telescope, but many components are nearing the end of their planned lifetime, including the track’s top layer of “wear plates” and epoxy grout between the plates and foundation. To revitalize the GBT and allow it to operate for the next twenty years, its track and grout must be replaced. Thanks to a new award from the NSF, this work will take place over the next four years. $5.3 million dollars will be used to purchase 48 new wear plates, and grout will be replaced in sections through 2026.

ARE ASTRONOMERS SEEING A SIGNAL FROM GIANT BLACK HOLES?

An international team of astronomers has discovered what could be the early sign of a background signal arising from supermassive black holes, observed through low-frequency gravitational waves. The International Pulsar Timing Array (IPTA) joins the work of several astrophysics collaborations from around the world, sharing Data Release 2 (DR2), consisting of precision timing data from 65 millisecond pulsars. 20 of these pulsars were observed by the Green Bank Telescope. Research has revealed strong evidence for a new low-frequency gravitational wave background signal, correlated by many of the pulsars.

A New Unified Characterization of Fast Radio Bursts Reveals Their Origin

Scientists using the Green Bank Telescope and China’s Five-hundred-meter Aperture Spherical radio Telescope (FAST) teamed up to shed light on the origin of the thousands of mysterious fast radio bursts that hit the Earth each day from locations far beyond the Milky Way. A research team analyzed the polarization properties of five repeating FRB sources using FAST to cover one set of radio frequencies and the GBT to cover another. They found that the polarization properties of FRBs depended on the observed frequency, and that the properties could evolve on relatively short times as well.

GBT & FAST REVEAL NEW ORIGINS OF BRIGHT RADIO FLASHES IN THE UNIVERSE

Scientists using the Green Bank Telescope and China’s Five-hundred-meter Aperture Spherical radio Telescope (FAST) teamed up to shed light on the origin of the thousands of mysterious fast radio bursts that hit the Earth each day from locations far beyond the Milky Way. A research team analyzed the polarization properties of five repeating FRB sources using FAST to cover one set of radio frequencies and the GBT to cover another. They found that the polarization properties of FRBs depended on the observed frequency, and that the properties could evolve on relatively short times as well.
COMPACT OBJECTS AND FUNDAMENTAL PHYSICS
The rapid, clock-like rotation of pulsars makes them unique tools for studying fundamental physics and stellar evolution. The GBT is a premier instrument worldwide for pulsar studies because of its sensitivity, wide frequency coverage, and location in the NRQZ. Pulsar studies will usher in the next great era of Gravitational Wave (GW) astronomy by opening the nanohertz GW spectrum, which will be dominated by the most massive objects in the Universe—supermassive binary black holes. This GW breakthrough will be achieved though monitoring the pulse arrival times from dozens of millisecond pulsars with an accuracy of tens to hundreds of nanoseconds over the course of many years using the NANOGrav Pulsar Timing Array (PTA), of which the GBT is a critical component.

STAR FORMATION AND EVOLUTION
The GBT will be used to map the starless and dense cores in the widely used dense gas tracer N2H+ to better understand the formation and diversity of protostellar disks and binary/multiple systems. Ammonia (NH3) lines in the Milky Way’s giant molecular filaments will be mapped to determine their role in star formation. Turbulent gas within the Milky Way will be studied to further refine its role as a regulator in star formation. GBT data will also be combined with ALMA observations to systematically measure the core mass function toward a sample of the most massive, parsec-scale clusters in the Milky Way.

THE INTERSTELLAR MEDIUM
An understanding of the interstellar medium (ISM) is essential for many areas of astronomy. Stars and planetary systems form from dense regions of the ISM, and at the end of their lives, stars recycle this material by injecting heavy elements back into the ISM in supernova explosions. With its wide frequency coverage, excellent sensitivity, and location in the National Radio Quiet Zone (NRQZ), the GBT has contributed significantly to ISM studies and will continue to do so in the coming years.

The GBT has been used to survey TMC-1 at high resolution and sensitivity to accurately determine the astrochemical models for this and similar regions of the ISM. The GBT has also detected phosphorus-bearing species within the ISM, which may have been essential key to form life on Earth. The GBT also studies NH3 in the inner regions of the Milky Way where previous observations have shown the ISM to have elevated gas temperatures to better understand heating mechanisms and their contributions to overall feedback within the ISM.

THE SEARCH FOR TECHNOSIGNATURES
The search for life beyond the solar system can be divided into two primary research areas; astrobiology (the search for complex, life-bearing signatures), and technosignatures (the search for signatures of a technological civilization).

Beginning in 1960 with Project Ozma’s use of the Green Bank Tatel telescope to monitor Tau Ceti and Epsilon Eridani for technosignatures, and the formulation of the Drake Equation in 1961, the Observatory continues to play a significant role in the search for technosignatures. At the present, the majority of the Observatory’s work in technosignatures is through Breakthrough Listen. Breakthrough Listen is using the GBT and other telescopes around the world to survey the 1,000,000 closest stars to Earth, the center of our galaxy, and the entire Galactic plane, as well as the 100 closest galaxies. The GBT will continue this important work, searching the most promising nearby star for technosignatures while also searching the universe for the important precursors of life.

THE SOLAR SYSTEM
The GBT is a unique asset in the field of planetary science. Working with Jet Propulsion Lab’s (JPL) transmitters, the GBT’s large collecting area, clean beam, optimized receivers, and location on the east coast of the U.S., make it the instrument of choice for bi-static radar studies of Solar System objects and telemetry observations in support of spacecraft missions.

The GBT is also ideal for the study of transitory phenomenon such as comets and asteroids. Bi-static radar techniques will continue to dominate asteroid research programs for the GBT into the future. With the upgrade of the Goldstone radar system now complete, bi-static radar imaging will continue to provide high-resolution maps of the most important and interesting asteroid bodies.

TRAINING & PROPOSAL CALLS
Training workshops are offered in the spring, summer, and fall. See our website for current workshop dates and to register
https://greenbankobservatory.org/science/GBT-observers/observer-training-workshops/

Calls for proposals to observe using the GBT are issued twice a year
https://greenbankobservatory.org/science/GBT-observers/proposals

SHARING OUR SCIENCE
The Observatory hosts many public and private workshops and conferences each year, from special topics focusing on radio astronomy, to the Society of Amateur Radio Astronomers and other groups. Presentations from these events are often recorded, archived, and shared at our website.
GREEN BANK SCIENTIFIC ACHIEVEMENTS

1950s
- Dedication of the Observatory in Green Bank
- Groundbreaking for the 140-foot Telescope
- National Radio Quiet Zone established
- Dedication of the Howard E. Tatel 85-foot telescope
- Grote Reber reconstructs his telescope
- Detection of emission from Jupiter’s radiation belts

1960s
- First SETI observations
- Drake Equation
- First radio astronomy at 1.4mm wavelength
- First digital autocorrelator in use
- Radio Recombination Line surveys
- Detection of Zeeman splitting of interstellar hydrogen
- Intercontinental interferometry: Green Bank to Sweden
- Discovery of the pulsar in the Crab nebula
- First organic polyatomic interstellar molecule

1970s
- First detection of radio novae
- First long carbon-chain interstellar molecule
- Radio recombination lines from the Galactic Center
- Discovery of Sgr A*, the Milky Way’s central black hole
- First measurement of relativistic deflection of light with 1% errors
- Discovery of the Tully-Fisher relationship
- Extended HI rotation curves reveal dark matter

1980s
- 1400 MHz sky survey
- CBS5 Survey of radio sources
- Area of the sky found with the least interstellar matter
- Discovery of Extreme Scattering Events
- Galactic Plane Radio Patrol
- Surveys of He3 emission
- First detection of HI in 50 galaxies
- First measurements of the magnetic field in molecular clouds

1990s
- GBT groundbreaking
- Green Bank Earth Station operates with Japan’s VSOP satellite
- Discovery of Maser emission from methanol

2000s
- GBT first light
- Discovery of high-velocity clouds around Andromeda
- Discovery of more than 20 pulsars in a globular cluster
- Detection of the first interstellar molecular anion
- Discovery of the fastest spinning pulsar
- Detection of the molten core of the planet Mercury
- Binary pulsar provides best test yet of general relativity
- GBT first observations at 3mm wavelength
- Hydrogen clouds found to be on a collision course with the Milky Way
- Many H2O masers found around black holes in galactic nuclei
- Discovery of the most massive known neutron star
- Commissioning of 16-pixel camera for 3mm spectroscopy
- First detection of an interstellar chiral molecule
- Measurements of redshifts and molecular gas for high-z galaxies
- Intensity mapping detection of hydrogen emission at z=0.8
- Pulsar in triple system confirms the Equivalence Principle
- Regular bi-static radar imaging of asteroids
- Galaxy clusters imaged at 9" using Sunyaev-Zeldovich effect.
- Detection of first interstellar aromatic Carbon ring molecule
- Commissioning of 223 pixel bolometer camera for 3mm
- Galaxy surveys establish existence of Laniakea Supercluster
- 3mm VLB1 of M87 jet at 250x80 micro-arcsecond resolution
- Best limit on a stochastic background of gravitational waves

2010s
- Direct detection of interstellar polycyclic aromatic hydrocarbons
- Independent determination of Hubble constant with 4% uncertainty
- Discovery of an extremely massive millisecond pulsar
- Detection of correlated red noise in a pulsar timing array
- Detection of long carbon chain molecule HC3N

2020s

GALAXY CLUSTERS

The collapse of galaxy clusters is driven by the strongest fluctuations in the primordial matter power spectrum. As direct tracers of fluctuations in the early Universe, clusters are important signposts of the large-scale spatial distribution of dark matter, and therefore provide one of the most sensitive probes of the unknown equation of state of dark energy.

The Sunyaev-Zeldovich Effect (SZE) provides a tool for studying the hot gas in clusters that is uniquely redshift-independent due to its nature as a fractional scattering of the cosmic microwave background. With its large size and the sensitivity of a single dish to low surface-brightness emission, the GBT is uniquely positioned to study galaxy clusters through measurement of the SZE. The large format MUSTANG-2 bolometer camera on the GBT measure the SZE at 3mm with uniquely high sensitivity at an angular resolution of 10", testing predictions for the SZE signal in detail.

The GBT has observed as part of the MaDCoWS project, a comprehensive program to detect and characterize the most massive galaxy clusters in the universe at z~1 and above. The goal of the program is to understand cluster mass scaling relations, identify high mass clusters that can be sued for cosmological and strong lensing studies, and study the evolution of massive galaxies in over-dense environments.

GALAXY FORMATION AND EVOLUTION

The GBT’s sensitivity to diffuse gas makes it an ideal instrument for the study of evolution of galaxies from the local (z=0) through the distant (z>6) Universe. Mapping the distribution and flow of cold gas within clusters and proto-clusters of galaxies, studying global star formation in nearby galaxies, determining the dynamics of the Galactic Bar, and mapping the HI clouds and bubbles within the Milky Way are just a few of the many ways the GBT will be contributing to our understanding of this important field.

The GBT will play a vital role in our general understanding of the evolution of galaxies through observations of redshifted CO(1-0) emission. Using the GBT, the redshifts and molecular gas masses have been measured for sets of ultra-luminous infrared lensed galaxies at high redshift that were discovered in wide-area Hershel and Planck surveys. GBT observations will continue to provide the impetus for follow-up high-resolution imaging studies of individual sources with ALMA and the VLA.
The GBT’s fully steerable 100-meter unblocked aperture, active surface, 0.29-116 GHz frequency coverage, flexible instrumentation, and location in two different interference protection zones makes it one of the world’s premier telescopes for studying low-frequency gravitational waves, multi-messenger astronomy, fundamental physics, fast radio transients, cosmology, star formation, astrochemistry, gas in galaxies, and the search for technosignatures.

The GBT has achieved excellent 3mm capabilities, with 35% and 18% aperture efficiency at 90 and 115 GHz, respectively. The GBT utilizes a dynamic scheduling system that optimizes each observing project’s scientific goals against the predicted weather conditions.

The GBT covers a frequency range of 290 MHz to 116 GHz (non-contiguous), with an instrument suite consisting of single/dual-pixel receivers from 290 MHz to 93 GHz and a seven-pixel heterodyne focal plane array at 18–26 GHz.

Two additional cameras, ARGUS, a 16-pixel single polarization array from 90–116 GHz and MUSTANG2, a 200+ pixel bolometer array at 81–100 GHz, are operated as instruments that may require added support from their principal investigators.

The GBT features industry-leading signal processing systems with a high dynamic range, a state-of-the-art system for high time and frequency resolution observations, and the capability for very wide bandwidth observations for spectral line and pulsar detection experiments.

Spectral and continuum observation data are processed with the VErsatile GBT Astronomical Spectrometer (VEGAS). Other instruments in use include a Digital Continuum Receiver (DCR), a Mark 6 VLBA disk recorder, and the Caltech Continuum Backend (CCB) managed by the Jet Propulsion Laboratory (JPL).

MORE DETAILS & WHITE PAPERS
greenbankobservatory.org/science/instruments-2020-2030
current & future INSTRUMENTS

ULTRAWIDEBAND RECEIVER the 0.7–4 GHz UWBR is undergoing commissioning and science operations are expected to begin in early 2023. It will offer enhanced sensitivity for pulsar studies of low frequency gravitational waves and fast radio transients and be used for molecular spectroscopy and measurement of radio recombination lines. UWBR is funded in part by the Gordon and Betty Moore Foundation.

X-BAND RECEIVER The new receiver, operating from 8–12 GHz, is currently in the commissioning process and will replace the older instrument at the same waveband. It will feature improved bandpass coverage with upgraded cryogenics and hardware, and is expected to be available for the 23A observing semester.

NEXT GENERATION RADAR PROGRAM (ngRADAR)
The National Science Foundation has awarded funds for the conceptual design of a higher-power radar system on the GBT – one that would be nearly 1,000 times more powerful than the proof of concept. In addition to a more powerful transmitter, NRAO and GBO, working with industry partners, will leverage new, solid-state amplifier and array receiving-system technologies to maximize the effectiveness of the new system. In parallel to this, as additional funding is allocated, the team plans to move to final design and construction activities, beginning in 2023.

NEXT GENERATION VERY LARGE ARRAY (ngVLA) will include several antennae at the Green Bank Observatory. This large project, highly ranked in the Astro2020 Decadel Review, will have 10x the sensitivity of the current Jansky VLA and a proposed frequency range (1.2–116 GHz) that complements the range of frequencies available to the GBT. The array design features a dense core of 18-meter antennae for low surface brightness imaging and extended baselines up to nearly 10,000 km for exquisite angular resolution. Site benefits include the radio quiet environment of Green Bank, geographic position compared to other planned antenna stations, and our readily available fiber, power, and infrastructure.

RADIO CAMERAS
ALPACA the Advanced Cryogenic L-Band Phased Array Camera, is under development by Brigham Young University and Cornell University for deployment on the GBT. This 40-beam L-band phased array would operate from 1.3–1.7 GHz and boast a field-of-view of 0.35 deg², enabling wide-area searches of Hi gas, FRBs, pulsars, and technosignatures.

ARGUS-144 is a natural extension of the existing Argus receiver and will improve the mapping speed within this band by an order of magnitude. The new 144 feed-horn camera will operate within the 74–116 GHz band that will provide wide-field imaging of key molecular transitions for the study of star formation and astrochemistry. It will include a dedicated spectrometer providing a total velocity coverage of 2000 km s⁻¹ with 0.015 km s⁻¹ resolution at 90 GHz.

KPAF the K-band Phased Array Feed will be capable of forming 225 independent, Nyquist-sampled beams which will dramatically increase the mapping capability of the GBT from 18–26 GHz. This instrument will be ideally suited to the size scales found in star-forming regions and will complement continuum studies such as Herschel’s SPIRE program with kinematic and accurate temperature measurements. It will provide ≤0.1 K RMS noise in 0.1 km s⁻¹ channels, with a system temperature ≤50 K and formed beam efficiency of 0.61.

MUSTANG-3 will have double the field of view, 7-28 times the number of detectors, and 19 times the mapping speed of MUSTANG-2. It will also have a wide bandwidth of 75–105 GHz and polarization capabilities. These capabilities will enable deeper, high resolution studies of cosmology, galaxy cluster physics, and star forming regions.

Wide-format radio cameras on the Green Bank Telescope will allow the study of star formation regions in unprecedented depth across wide areas of the Galaxy. Proposed new instruments Argus-144 and KPAF would offer many more pixels on the sky and increased bandwidth, covering key molecular tracers including ammonia, HCN, HCO⁺, and CO. Image credit NSF/GBO/Paul Vosteen.
TELESCOPES

Green Bank’s instruments have been used for a wide range of purposes including satellite tracking, spacecraft tracking, atmospheric studies, monitoring of astronomical and planetary phenomena, and educational programs.

85-FOOT TELESCOPES In 1959, the first 26-meter telescope, known as the Tatel Telescope, was built on site. Soon after, two more were added, the 85-2 and 85-3. While able to be run independently, the three telescopes were most often used together as the Green Bank Interferometer. Use of the telescopes ended in 2000, and they are now preserved for their historical significance. With refurbishment, all three can be restored to full operations.

20-METER TELESCOPE Built for the United States Naval Observatory in the 1990s, it participated in a global program of Earth Orientation very long baseline interferometry measurements in cooperation with the International Earth Rotation Service and the NASA Space Geodesy program. In recent years it has been used to search for Fast Radio Bursts, monitor the Crab Pulsar, and map the OH within the Milky Way. It is used as an educational telescope as part of the University of North Carolina’s Skynet program.

45-FOOT TELESCOPE This 13.7-meter diameter telescope was built in 1973 as the outlying fourth element of the Green Bank Interferometer and was critical to prove that the long baselines of the Very Large Array would be feasible. It was later converted by NASA into a tracking station for orbiting satellites. The antenna, combined with Japan’s orbiting HALCA satellite, became part of what was once the largest telescope every used—an interferometer that spanned 60,000 miles. Later, it was re-purposed for daily solar observations as part of the Frequency Agile Solar Radio telescope, through 2012.

NATIONAL RADIO QUIET ZONE
13,000 square miles of regulatory protection on all fixed, licensed radio transmitters

WEST VIRGINIA RADIO ASTRONOMY ZONE
10 mile radius, increased restrictions on all electrical emissions
GREEN BANK OBSERVATORY TELESCOPES
AVAILABLE FOR NEW PROJECTS

<table>
<thead>
<tr>
<th>DIAMETER</th>
<th>PERFORMANCE (Efficiency)</th>
<th>TRACKING SPEED (°/min)</th>
<th>POINTING ACCURACY (°)</th>
<th>SKY COVERAGE ELEVATION (°)</th>
<th>AZIMUTH (°)</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-foot (13.7m)</td>
<td>38% at 15 GHz</td>
<td>35-40</td>
<td>0.01-0.03</td>
<td>+3 to +112</td>
<td>-162 to +373</td>
<td>Operational</td>
</tr>
<tr>
<td>20-meter</td>
<td>50% at 10 GHz</td>
<td>120</td>
<td>0.01</td>
<td>+1 to +90</td>
<td>-270 to +270</td>
<td>Operational</td>
</tr>
<tr>
<td>85-foot (26m)</td>
<td>40% at 8.8 GHz</td>
<td>20*</td>
<td>0.01</td>
<td>-40 to 88**</td>
<td>-82 to +82**</td>
<td>Needs Refurbishment</td>
</tr>
<tr>
<td>140-foot (43m)</td>
<td>50% at 7.2 GHz</td>
<td>20-40</td>
<td>0.004</td>
<td>-40 to 81**</td>
<td>-105 to +105**</td>
<td>Operational</td>
</tr>
<tr>
<td>GBT 100-meter</td>
<td>70% at 7.2 GHz 35% at 90 GHz</td>
<td>18-35</td>
<td>0.001</td>
<td>+5 to +90</td>
<td>-270 to +270</td>
<td>Operational from 0.2 through 116 GHz</td>
</tr>
</tbody>
</table>

*Original specifications

**Coverage is given in declination and hour angle (degrees).

SEE MORE
greenbankobservatory.org/telescopes

140-FOOT TELESCOPE Built for radio astronomy research in the 1960s, the 43-meter diameter telescope has an equatorial mount which allows it to avoid any tracking, or “zone of avoidance,” issues when tracking objects at or near the zenith. It worked as an astronomical research instrument from 1965 through 1999 when it was retired as a general user facility. Six years later, in 2005, the 43m telescope was put back into use, this time as part of a satellite tracking program instituted by the Massachusetts Institute of Technology’s Lincoln Laboratory to study the ionosphere. From 2012-2019, it served as a satellite data down-link station for a space-based astronomy satellite, Spektr-R’s RadioAstron instrument.

40-FOOT EDUCATION TELESCOPE Purchased from a commercial vendor in 1961, this inexpensive aluminum instrument took only two days to set up. With a control system designed and built by Observatory staff, it became the world’s first fully automated telescope, providing unmanned observing focused solely on radio sources. In 1987 it was recommisioned as an educational telescope and is now used to teach radio astronomy to thousands of students and adults each year.
The Observatory’s microwave engineering group maintains a laboratory equipped with state-of-the-art test and measurement equipment, including a bonding machine and probe station for building and testing Monolithic Microwave Integrated Circuit (MMIC) devices, an Anritsu Vector Star vector network analyzer capable of measuring microwave components up to 115 GHz, and an assortment of RF and fiber optic devices. The RF laboratory routinely produces working RF board and receiver designs up to 115 GHz using CST Microwave and Microwave Office development software. Recent projects include a 19-element L-band cryogenic Phased Array Feed receiver, a K-band focal plane array, and a dual beam 4mm receiver with calibration optics. The staff also routinely experiments with commercially available MMIC devices to improve gain stability and baseline performance of the current GBT systems. The Ultra Wide Band Receiver, X-Band Receiver, and radar projects have all been supported in-house.

Observatory staff possess decades of combined expertise and experience developing, building, and repairing all of the instruments and systems in Green Bank, and have built or contributed to many more projects worldwide. While focused towards Green Bank operations, the staff are also able to develop innovative solutions and products for other research organizations around the world.

DIGITAL

Focusing on issues ranging from active surface electronics through optimized analog-to-digital conversion, active signal excision and FPGA and GPU technologies, the Green Bank Observatory’s digital engineering group provides state of the art research and technologies into all aspects of telescope operations and signal processing. Current projects underway in the digital group include real-time RFI excision across 5-10 GHz bandwidths, modernized active surface control and metrology techniques, and high bit, high time resolution signal processing.
SOFTWARE

The Observatory’s software development division develops, maintains, and upgrades subsystems supporting the optimization, operation, and data reduction for all Observatory telescopes and systems, including: observation management, telescope monitor and control, telescope scheduling, data reduction, and data archiving, visitor reservations and site management and administration. The division simultaneously supports new development and ongoing operations using development methodologies that best support a given project and team. This makes effective use of automation, and carefully balances custom code development with open source solution integration.

MECHANICAL

The Observatory shop completes countless challenging fabrications each year, often developed from sketches provided by engineers and scientists. Rapid repair capabilities maximize telescope efficiency and compress development schedules for producing instruments. Machinists produce parts with tolerances that are much tighter than most commercial shops. The shop utilizes a full range of fabrication techniques that include both manual and CNC machines for fabrications from the very small through the very large, along with 3-D printing and welding across a wide variety of metals and techniques.
FACILITIES
RESEARCH & FIELD STATIONS

The Observatory is an attractive location for independent research experiments, and serves as the field station for several university-based research teams.

The site has significant infrastructure which allows for the installation of any instrument which may benefit from the radio quiet location, as well as a radio frequency test range for receivers and for testing antenna beam patterns, and a large anechoic chamber for testing radio emissions from all types of equipment.

With nearly 2,700 acres of land, good network connectivity, and reliable power, numerous groups have also taken advantage of the infrastructure and radio quiet zones to deploy their own instruments on site. These include several arrays of telescopes and antennas operating from 20-100 and 100-200 MHz, one station from a nation-wide magnetometer array, a GPS sensor deployed as part of West Virginia’s geo-spatial array, along with a prototype array and permanent outrigger (pictured bottom right) for CHIME, the Canadian Hydrogen Intensity Mapping Experiment.

2,700 ACRES
RADIO FREQUENCY TEST RANGES
ANECHOIC CHAMBER
ANTENNAS, TELESCOPE ARRAYS & OUTRIGGERS
The Observatory hosts numerous public and private meetings, workshops, and events year round at auditoriums in the Jansky Lab and Science Center, with full presentation capabilities.

Several classrooms and a computer lab are available in the Science Center. While WiFi is not available onsite to avoid interference with our observations, wired internet connections are available in numerous locations.

Several options for overnight stays are available at the Observatory, including apartments, houses, and a dormitory which is ideal for student and Scout groups. Other accommodations can be found in the surrounding area for larger groups.

The Observatory cafeteria can serve breakfast, lunch, and dinner. Catering is available across campus, including coffee breaks, receptions, and meals. Refreshments and meal options are also available directly from the Science Center Starlight Cafe, whose hours vary by season.

The Drake Lounge, located above the cafeteria, is a historic space that is often used for receptions and informal gatherings.

There is ample parking at several locations on site, with room for RVs, buses, and motorcoaches. Charging stations for electric vehicles are located next to the dormitory.

On site and online, we offer a wide range of gifts for science lovers of all ages, including unique products made in our Observation machine shop. Members, conference attendees, and educators receive a discount. shop.greenbankobservatory.org

The Observatory features a 1.5-mile (3-mile out and back) paved self-guided walking tour of the Solar System, ending at the GBT.

Bicycles are welcome on the grounds to explore 10-miles of trails on paved, mowed, gravel, and single-track surfaces. Trail maps are available online (download and print before you visit) in the Science Center and Jansky Lab, and posted at trail head parking located at the rear of the Jansky Lab parking lot. Primitive camping is available in specific locations, and is a part of several special events each year.
EDUCATION

STUDENTS
The Observatory's staff and facilities offer extraordinary STEM education through online and real world hands-on experiences for learners of all ages.

RADIO ASTRONOMER FOR A DAY Scientists routinely tackle questions that don’t yet have answers. This student overnight program provides an authentic research experience with tours, hands-on activities, and training on a working radio telescope. This program is open to all school and youth groups (5th grade and above) and meets NGSS Nature of Science standards.

WEST VIRGINIA GOVERNOR’S STEM INSTITUTE Funded by the State of West Virginia, the Observatory hosts sixty 8th graders for a 2-week summer camp focusing on science, astronomy, and personal development.

PHYSICS INSPIRING THE NEXT GENERATION PING engages traditionally underrepresented students to science and engineering, with a focus on physics and radio astronomy. Launched in 2014, PING immerses middle school students in a 2-week residential research camp and undergraduate students in a 10-week internship that includes mentoring the younger students.

FIRST2NETWORK With funding from the NSF, the Observatory coordinates a national program to connect underserved first generation college students from diverse groups to STEM career mentorships, training opportunities, and employment.

PULSAR SEARCH COLLABORATORY
The PSC engages high school students and their teachers in the quest to discover new pulsars and transient sources by analyzing data from the GBT. Twice each academic year the Observatory holds a six-week online training course. Participants may apply to summer camp at the Observatory and annual capstone events. Several PSC students have discovered new pulsars and become published authors before graduating from high school.

WEST VIRGINIA SCIENCE PUBLIC OUTREACH WSPOT began in 2013 as a NASA partnership, that trains undergraduates to deliver interactive science, technology, and engineering presentations to K-12 classrooms, museums, and youth programs. To date, over 800 presentations have been given, impacting the lives of over 25,000 students.

SKYNET JUNIOR SCHOLARS SJS allows educators and students to gain access to telescopes around the world, including the 20m radio telescope at the Observatory. Students remotely access telescopes to collect real project data and collaborate with each other in online communities. Educators and youth leaders can form their own clubs.

WEST VIRGINIA LEAP INTO SCIENCE The Observatory provides professional development to this network of informal educators which brings engaging STEM-inspired early childhood and family science events to community settings. Educator training opportunities and other resources are available.

GBO & NRAO RESEARCH EDUCATION EXPERIENCE Each summer nearly sixty students are paired with staff for immersive virtual and site based research and training experiences.

PROGRAM DESCRIPTIONS, DATES, & APPLICATIONS
greenbankobservatory.org/education

reservations@gbobservatory.org
304-456-2150
CAREER DEVELOPMENT
From high school through post-doctoral studies, students have several opportunities to explore career options in STEM and other work fundamental to the operations of the Observatory.

POST-DOCTORAL POSITIONS Post-Docs are an integral part of the Observatory team and balance a variety of duties along with their own independent research. Two to three year positions are available on a rolling basis.

SUMMER EXPERIENCE FOR UNDERGRADUATES Summer positions can include astronomical research, and software, electrical, or hardware engineering, as well as working with plant maintenance and the machine shop. Students involved in basic research often attend scientific conferences and publish their results.

INTERNSHIPS These paid appointments provide staff support in a specific division, along with on-the-job training, tailored to meet specific academic requirements.

APPRENTICESHIPS Learn how to do a specialized job through on-the-job training, under the guidance of an experienced colleague. Three to six months paid appointments are available in mechanical engineering, machining, electronics and telescope maintenance/mechanics.

CO-OPS Academic institutions are encouraged to contact the Observatory directly with proposals for student placements.

EMPLOYMENT
The Observatory is hiring permanent, temporary, and seasonal positions. Current openings can be found at greenbankobservatory.org/careers

A diverse staff is critical to mission success: enabling world-class science, training the next generation, and fostering a scientifically engaged society. Green Bank Observatory is committed to a diverse and inclusive work place culture that accepts and appreciates all individuals.

VIRTUAL PROGRAMS
Can’t come to the Observatory? Tune in from home, and we will come to you! Virtual Site Tours are offered for individuals and groups of all ages throughout the year.

Approved groups of five or more students can register for a Virtual Field Trip to learn about the Observatory history, radio astronomy, our latest science, and more! These programs are tailored to your curriculum and time available. Learn more and sign up today:
greenbankobservatory.org/education/virtual-visits

EDUCATORS
RESEARCH EXPERIENCE FOR TEACHERS
In conjunction with West Virginia University, this 6-week summer research program trains teachers in digital signal processing in radio astronomy. Learn how to use an inexpensive, versatile and rapidly developing technology (software defined radios) which can be implemented for astronomy applications as well as for receiving signals from satellites, like the NOAA weather satellites. Each summer, up to eight teachers spend 4-weeks at WVU, and 2-weeks at the Green Bank Observatory.

CHAUTAUQUA SHORT COURSES
This 2.5-day course shares the fundamentals of radio astronomy and cutting edge scientific research with small college and community college faculty from around the nation. Each year between 25-30 participants interact with Observatory astronomers and engineers, enjoy behind the scenes tours and use educational radio telescopes to complete projects.
SCIENCE CENTER

The 25,000 square-foot Science Center features a 150-seat auditorium, classrooms, indoor star lab, computer lab, Galaxy Gift Shop, and Starlight Café. There is no admission fee to visit the Catching the Wave Exhibit Hall or take a self-guided walking tour of the Observatory.

Fees are charged for guided public tours and some special events. Advanced registration is required for field trips and large groups. There is ample parking for buses and RVs. The Science Center is accessible and wheelchairs can be accommodated on buses for guided public tours.

Days of operation and hours change seasonally. The Center may close or cancel events to support necessary safety regulations during times of need. Virtual tours and activities are available and self-guided walking tours are always welcome. Visit greenbankobservatory.org for the latest information.

GUIDED PUBLIC TOURS
These 1-hour tours offer a fun peek into the world of radio astronomy with science demonstrations and a bus excursion into the restricted zone surrounding the telescopes. Tickets may be purchased in the Galaxy Gift Shop, no advanced registration required.

SPECIAL GUIDED TOURS
Focusing on unique aspects of our site's history with limited tickets available. Reservations are highly recommended, as these sell out! Dates and times are available online and in our brochure.

High-Tech Tours See how technology used in radio astronomy is developed, going behind-the-scenes in labs and telescope control room.

SETI Tours The search for extraterrestrial life began in Green Bank! Learn this history, visiting several unique locations including historic control rooms. Some historic locations require the climbing of stairs.

History Tours How did the Observatory get started? What are some of the most exciting and important achievements? Learn this history, visiting several locations. Some historic locations require the climbing of stairs.

Guided Nature Walks There is more to the site than our astronomy. Enjoy a guided walk along our nature trail and discover the valley's ecology and geology.

FIELD TRIPS
Tours, activities, and day and overnight field trips for organized groups of students grades K-12 are available. Overnight field trips experience hands-on scientific research projects with a working radio telescope. Field trips can be customized to complement classroom curricula and other field trips in the area.

SCOUTS
Scheduled overnight programs are offered on selected weekends. Using a working radio telescope, Scouts BSA can earn their Astronomy or Electronics Merit Badge, and Girl Scouts can earn a space-themed badge as well. Day activities are offered for Daisies and Brownies. Outside of these scheduled programs, Scout Troops may make reservations for tours and other hands-on science activities, with camping and other housing options available.
SPECIAL EVENTS

STAR PARTIES Explore some of the best dark skies in West Virginia with an optical telescope. Offered monthly at sunset, all ages welcome.

STAR LAB SUNDAYS Family fun for all ages! Crawl into the planetarium balloon for a fascinating night sky tour. Reservations recommended.

FAMILY SCIENCE LABS Select Saturdays, kids ages 4-9 enjoy hands-on science projects. Reservations recommended.

FAMILY SCIENCE DAY OPEN HOUSE This annual afternoon of fun offers FREE guided Site Tours along with hands-on science experiments, crafts, and games for all ages.

SPACE RACE RUMPUS* An annual weekend-long festival for mountain biking and road cyclists of all ages, from beginner to advanced. Clinics and rides on trails and roads, bike rodeo, star parties, bonfire, live music, and camping. Lots of fun for adventurous families!

Date and registration at spaceracerumpus.org

STARQUEST* The largest annual optical and radio telescope star party in the nation, camp out for 4 days and 3 nights, with a full schedule of speakers, workshops, raffles, activities, and more.

Date and registration at greenbankstarquest.org

*These events are coordinated by community partners

explore more

A visit can complement many other adventures in the region! The Observatory is surrounded by the Monongahela National Forest. There are many scenic natural areas, historic sites, and attractions for exciting day and overnight trips.

15 MINUTES Cass Scenic Railroad State Park, Greenbrier River Trail

40 MINUTES Snowshoe Resort, Durbin Rocket, National Youth Science Camp, Seneca Lake State Park

WITHIN 2 HOURS Seneca Rocks, Spruce Knob, Seneca Caverns, Smoke Hole Caverns, Blackwater Falls State Park, Davis, Cranberry Glades Botanical Area, Elkins, Marlinton, Lewisburg, Droop Mountain Battlefield, the Greenbrier, Monterey, Warm Springs, the Homestead Resort, Garth Newel Music Center

more information

Pocahontas County Visitors Bureau naturesmtnplayground.com

West Virginia Tourism wvtourism.com
SEE MORE
The Observatory shares news & information on several platforms including greenbankobservatory.org along with Facebook, Twitter, Instagram, YouTube, LinkedIn, & Trip Advisor. A variety of images and video for news and educational use are available on Flickr. Guidelines for visitor photography, social media policies, and press inquiries can be found at our website.