HI Observations with the GBT Position Switched, Single-Pointing Observations

More detailed information can be found in the GBT Observer's Guide:

http://www.gb.nrao.edu/scienceDocs/GBTog.pdf

```
# Observing script for spectral line observations of HI using position switching.
# Reset configuration from prior observation.
ResetConfig()
# Import catalog of flux calibrators and user defined sources.
Catalog(fluxcal)
Catalog('/home/astro-util/projects/quick guide/catalogs/ps HI.cat')
# Define configuration parameters
ps HI config=```
receiver = 'Rcvr1_2'
obstype = 'Spectroscopy'
backend = 'VEGAS'
restfreq = 1420.4058
bandwidth = 23.44
nchan = 32768
vegas.subband = 1
swmode = 'tp'
swhode = cp
swtype = None
swfreq = 0, 0
swper = 1.0
tint = 6.0
vframe = `lsrk'
vdef = `Optical'
noisecal = 'lo'
pol = 'Linear'
notchfilter = 'In'
1 1 1
# Configure telescope.
Configure (ps HI config)
# Slew to your source or calibrator.
Slew('3C196')
# Perform position and focus correction on nearby calibrator.
# Leaving the `()' blank will have the system choose your calibrator for you.
AutoPeakFocus ('3C196')
# Slew to your source.
Slew('RSCG31')
# Reconfigure after calibrator corrections.
Configure (ps HI config)
# Balance the IF system
Balance()
# OffOn produces two scans each of the specified duration (in seconds) which
tell the GBT to take data for 10 minutes.
OffOn('RSCG31', Offset('J2000', '-00:05:00', 0.0, cosv=True), 300)
```

Catalogs To find out more about catalogs: GBT Observer's Guide: Section 6.3

Here is an example of a RA/Dec coordinate system catalog with velocity:

# Source List for	f HI observi	ng with RA/	Dec coordinates.
Coordmode = J2000 HEAD = NAME) RA	DEC	VEL
RSCG31	09:17:26.5	41:57:18	1600
RSCG64	12:41:33.2	26:03:56	4800

Note: Vel is source velocity in units of km/s. Reference frames can be set using the VDEF keyword in the config. You can also include any number of user defined keywords. See Observer's guide for more information.

Note: These should be saved as a '.cat' file, in a known location, to be called later.

Configurations To find out more about configurations: <u>GBT Observer's Guide: Section 6.2</u>

Here is an example of a position switched configuration for HI observations:

```
# Configuration parameters for spectral line observations of HI using frequency switching.
```

```
ps HI config=```
```

ps_HI_CONI.	1g= · · ·		
receiver	= 'Rcvr1_2'	#	Specifies L-Band receiver for HI
obstype	= 'Spectroscopy'	#	Specifies spectral line observations
backend	= 'VEGAS'	#	Specifies spectral line backend
restfreq	= 1420.4058	#	Specifies rest frequency for HI (MHz)
deltafreq	= 0.0	#	Specifies offsets for each spectral window (MHz)
bandwidth	= 23.44	#	Defined by chosen VEGAS mode (MHz)
nchan	= 32768	#	Specifies number of channels in spectral window
vegas.subba	and = 1	#	Specifies single or multiple spectral windows (1 or 8)
swmode	= 'tp'	#	Specifies switching mode, switching power with noise diode
swtype	= None	#	Specifies frequency switching
swper	= 1.0	#	Specifies length of full switching cycle (seconds)
swfreq	= 0, 0	#	Specifies frequency offset (MHz)
tint	= 6.0	#	Specifies integration time (sec; integer multiple of swper)
vframe	= `lsrk'	#	Specifies velocity reference frame
vdef	= 'Optical'	#	Specifies Doppler-shifted velocity frame
noisecal	= `lo'	#	Specifies level of the noise diode, use 'lo' for 'fsw'
pol	= 'Linear'	#	Specifies 'Linear' or 'Circular' polarization
notchfilter	r = 'In'	#	Specify 'In' to block 1200-1310 MHz RFI signal

NOTE: Your parameters may differ based on your specific science goals.

Scripts (Scheduling Blocks)

To find out more about scripts: <u>GBT Observer's Guide: Section 6.1</u>

Astrid is used to submit scripts, or Scheduling Blocks, for GBT observations. Astrid is Python based and can incorporate custom user scripts. Here is an example of a basic position switched, tracking observation for HI observing.

```
# Observing script for spectral line observations of HI using position switching.
# Reset configuration from prior observation.
ResetConfig()
# Import catalog of flux calibrators and user defined sources.
Catalog(fluxcal)
Catalog('/home/astro-util/projects/quick guide/catalogs/ps HI.cat')
# Define configuration parameters
ps HI config=```
receiver = 'Rcvr1 2'
obstype = 'Spectroscopy'
backend = 'VEGAS'
restfreq = 1420.4058
bandwidth = 23.44
nchan
       = 32768
vegas.subband = 1
swmode = 'tp'
swtype
          = None
         = 0, 0
swfreq
          = 1.0
swper
tint
           = 6.0
        = `lsrk'
vframe
vdef
          = 'Optical'
noisecal = 'lo'
          = 'Linear'
pol
notchfilter = 'In'
111
# Configure telescope.
Configure (ps HI config)
# Slew to your source or calibrator.
Slew('3C196')
# Perform position and focus correction on nearby calibrator.
AutoPeakFocus ( '3C196')
# Slew to your source.
Slew('RSCG31')
# Reconfigure after calibrator corrections.
Configure (ps HI config)
# Balance the IF system.
Balance()
# OffOn produces two scans each of the specified duration (in seconds) which tell
the GBT to take data for 10 minutes.
OffOn('RSCG31', Offset('J2000', '-00:05:00', 0.0, cosv=True), 300)
OnOff('RSCG31', Offset('J2000', '00:05:00', 0.0, cosv=True), 300)
# Repeat for second source.
Slew(`RSCG64')
Balance()
OffOn('RSCG64', Offset('J2000', '-00:05:00', 0.0, cosv=True), 300)
OnOff('RSCG64', Offset('J2000', '00:05:00', 0.0, cosv=True), 300)
```

Data Reduction

To find out more about data reduction: <u>GBTIDL User's Guide</u>

Our current data reduction routines are written in IDL. Users can build custom scripts incorporating generic IDL commands. We will run through some common GBT IDL commands below.

From a Green Bank Observatory data reduction machine (Fourier, Arcturus, Planck, Newton, Euclid), log into GBTIDL by typing 'gbtidl' from a terminal.

```
bash$ gbtidl
Starting GBTIDL
Welcome to GBTIDL v2.10.1
For news, documentation, enhancement requests, bug tracking,
discussion, and contributions, visit:
http://gbtidl.nrao.edu
For help with a GBTIDL routine from the command line, use
the procedure 'usage'. For example:
usage,'show' ; gives the syntax of the procedure 'show'
usage,'show' ; gives more information on 'show'
GBTIDL ->
GBTIDL ->
```

To access test the data presented in this reference guide type 'offline' followed by the project name:

GBTIDL -> offline, "TGBT20A_506_01"

Note: 'Connecting to file' tells you where the raw data files are located. File updated shows how long ago the last scan was updated.

Note: To view data from a different observing project, replace the (TGBT_506_01) with the information for your project:

- o Semester number (e.g., AGBT20A)
- o Project number (e.g., 108)
- Session number (e.g., 01)

Note: To access current observations, or see real-time data during an observing session, type 'online' from the command line. The project code is not needed in online mode.

Type 'summary' to view your observations:

GBTIDL - Scan	> summary Source Vel Proc Seq RestF nIF nInt nFd Az El	
6	RSCG31 1600.0 OffOn 1 1.420 1 51 1 309.1 18.7	
7	RSCG31 1600.0 OffOn 2 1.420 1 51 1 309.2 18.7	
8	RSCG31 1600.0 OnOff 1 1.420 1 51 1 309.8 17.9	
9	RSCG31 1600.0 OnOff 2 1.420 1 51 1 309.8 17.9	
10	RSCG64 4800.0 OffOn 1 1.420 1 51 1 271.2 43.3	
11	RSCG64 4800.0 OffOn 2 1.420 1 51 1 271.2 43.2	
12	RSCG64 4800.0 OnOff 1 1.420 1 51 1 272.0 42.2	
13	RSCG64 4800.0 OnOff 2 1.420 1 51 1 272.1 42.1	

Note: For more information on what each column is, please see the GBTIDL User's Guide <u>GBTIDL</u> <u>User's Guide: Section 4.7</u>.

Use the 'getps' command to view your position switched observations. Include which scan you would like to look at. Here, we will analyze scan 6.

Note: You can change the x-axis to the Doppler shifted velocity of the rest frequency (F0) by clicking on the 'GHz' GUI button and selecting 'km/s'.

To get the second polarization, you can in turn type:

GBTIDL -> getps, 6, plnum=1

To stack/average multiple scans together to improve signal to noise in the spectrum:

```
GBTIDL -> getps, 6
GBTIDL -> accum
GBTIDL -> getps, 8
GBTIDL -> accum
GBTIDL -> ave
```

To smooth out your spectra by a specific number of channels, you can use the 'gsmooth' command:

You can do all this for the second source as well.

Note: If you have multiple IF tunings, you may view those other IFs by indicating ifnum=0, 1, 2, etc.

Saving and/or exporting your data can be done in multiple ways. All of these procedures are located in the <u>GBTIDL User's Guide: Section 9</u>.

One example of this is the write_ascii command:

GBTIDL -> write_ascii, "mydata.txt" ASCII file written:data

This will output the data into the current directory.