

GBT@20: 3mm Continuum Science

BRIAN MASON (NRAO) - 22 APRIL 2021

MUSTANG & MUSTANG-2

- Broad-band 3mm continuum (bolometer) cameras:
 - ~ 80 100 GHz; 9" resolution on the GBT
 - Field of View: 42" (M-1), 4' (M_2)
 - Science observing: 2008-2015 (M-1), 2016+ (M-2)
 - 300 mK cryogenics
- Developed in collaboration with **U.Penn (Mark**) Devlin, Simon Dicker, +); NIST; NASA/GSFC; & many others.

MUSTANG-2 proposals by science category (2018 & 2019)

7.3%

73.2%

spectra. It will then be necessary to remeasure the Sunyaev-Zel'dovich effect with higher sensitivity and angular resolution, a task perfectly matched to the Green Bank Telescope.

Galaxy clusters AGN Planetary Star Formation

From the original GBT proposal (1989):

Continuum Emission from a Typical Galaxy (M82)

Condon (1992, ARA&A)

3mm Dust Emission in the Integral Shaped Filament

Schnee+2014; Sadavoy+ (2016): Mason+ (2020):

Distinct break in the spectrum of thermal dust emission which continues to 1cm

IMPLICATIONS:

- dust models
- Inferences from 1cm~3mm continuum (dynamical stability estimates)

10⁰ Intensity [Jy Arcsec⁻²] 10^{-2} 10^{-3} 10-4 **10⁻⁵ 10⁻⁶** 10°

3mm dust emission in other dense, star forming filaments

Atacama Cosmology Telescope (ACT) 90 GHz + 150 GHz data + Herschel: ~8 square degrees

Work led by Ian Lowe (U.Penn) with the **MUSTANG-2** and ACT collaborations

Similar behavior is seen in 5 other dense, star-forming filaments

MUSTANG-2+ALMA+ACT: GBT21A-376

Star Formation Radio Survey (SFRS)

- Multi-wavelength survey aiming to provide a better-calibrated, better understood relationship between high mass SF and radio continuum brightness (PI Eric Murphy)
 - >60 nearby galaxies (SINGS/KINGFISH/ GOALS): Spitzer, VLA, ALMA, ATCA ...
- GBT+MUSTANG-2 3.3mm continuum imaging for 18 galaxies & counting (GBT19A-284, 19B-012, 21A-250)
 - Emission at 3.3mm is mostly dominated by free-free, with some scatter (including sources that are dust-dominated at 3.3mm)

Abigail Harden (NRAO REU, incoming UVA astro), Eric Jimenez-Andrade, Eric Murphy

RA (J2000)

Dec (J2000)

Star Formation Radio Survey (SFRS)

- Multi-wavelength survey aiming to provide a better-calibrated, better understood relationship between high mass SF and radio continuum brightness (PI Eric Murphy)
 - >60 nearby galaxies (SINGS/KINGFISH/ GOALS): Spitzer, VLA, ALMA, ATCA ...
- GBT+MUSTANG-2 3.3mm continuum imaging for 18 galaxies & counting (GBT19A-284, 19B-012, 21A-250)
 - Emission at 3.3mm is mostly dominated by free-free, with some scatter (including sources that are dust-dominated at 3.3mm)

Abigail Harden (NRAO REU, incoming UVA astro), Eric Jimenez-Andrade, Eric Murphy

Dec (J2000)

MUSTANG Galactic Plane Survey

0.17

0.2

Ginsburg+ (2020, ApJS)

7.5 deg2, 1-2 mJy/bm RMS @ 3.3mm; 10" resolution $^{\circ\circ}$

18 hours of GBT time in total

Maps available at doi:10.7910/DVN/HPATJB

10 candidate Hyper-compact HII regions with no cm detections (+4 previously known)

Comparing HCHII count with UCHII count yields an estimate of HC HII lifetime:

16% < THCHII/TUCHII < 46%

Galaxy Clusters

Sunyaev-Zel'Dovich Effect (SZE)

Galaxies

photon (radio)

╋

photon (radio... slightly boosted)

Hot Intra-Cluster Plasma

+

Dark Matter

 Proportional to integrated thermal electron pressure

• Appears as a decrement at λ< 1.4mm

X-ray Bremmstrahlung

hot gas

Redshift-independent: effective tool at high-z

Outstanding sensitivity to

requires sensitive detectors

* Excellent view of density variations

* Some Spectral Information — but less useful in lowensity regions (outside cluster core), at hi-z, or for very hot gas

Routine 9" resolution SZE Imaging!

MUSTANG-2 SZE Images of MADCOWs clusters (PI: Mark Brodwin)

Routine 9" resolution SZE Imaging!

- •> 30 high quality, high-resolution SZ images
- Samples:
 - MaDCOWS
 - Hyper-Suprime Cam (weak lensing)
 - Hubble Frontier clusters
 - Individually interesting targets (high-z, merging)
- Science:
 - Measure pressure profiles
 - Assess dynamical state
 - Look for shocks & other difficult to study ICM features

AGN-inflated X-ray Bubbles

MS0735+7421

MUSTANG-2 SZE image (16h on source)

PI: Tony Mroczkowski (GBT21A-123 +)

Suppression of SZE decrement suggests the jet does not primarily comprise very hot, thermal electrons.

Shocks & other interesting ICM features

HSC J023336-053022

20 - 30 keV gas

Okabe+ 2020

BRIAN MASON (NRAO) - 22 APR 2021 - GBT@20 - 3MM CONTINUUM SCIENCE

Significant (> 2') offset between SZE and BCG / optical centroid ()2000)

Dec

Dicker+2020

8°26' 10^h52^m24^s 12^s 06^s 18^s RA (J2000)

MOO 1052 SNR

RXJ1053+5725 (z=1.14)

Ongoing high-z merger

(Hashimoto+2002)

IDCS J1426.5+3508 (z=1.75)

BRIAN MASON (NRAO) - 22 APR 2021 - GBT@20 - 3MM CONTINUUM SCIENCE Andreon et al. (submitted)

MUSTANG-2 + Chandra pressure profile fit

Pressure profile at r > 400 kpc flatter than "Universal" pressure profile, suggesting non-thermal pressure support in outskirts (bulk motion & turbulence)

Summary

- Multi-pixel continuum cameras on the GBT provide a powerful, flexible capability to address a wide range of science topics, some foreseen, and some not:
 - High-angular resolution SZE
 - Star formation (Galactic and extragalactic)
 - Dust physics
 - Even lunar physics!
- These capabilities, and the underlying flexibility of the GBT to readily deploy new instrumentation, will remain valuable in the era of NGVLA, SKA, and ALMA 2030.

MUSTANG-2 & Optical

May 15, 2019

GBT19A-427 (PI: Paul Hayne)

Thank you to: the organizers,

Everyone who helped imagine & build the GBT,

Everyone who helps keep it running,

MUSTANG co-l's,

And the MUSTANG instrument collaboration.

