Insights into intracluster medium physics via the Sunyaev-Zel'dovich Effect

Charles Romero on behalf of the MUSTANG-2 team

Charles Romero

Outline

- 1. Introduction to galaxy clusters, SZ
- 2. Profile analyses
 - a. X-ray & SZ fits
- 3. Beyond (standard) profiles
 - a. Probes of turbulence
 - b. Substructure, heating, CR acceleration (gastrophysics)

Galaxy Clusters

- 80-90% Dark Matter
- 9-18% ICM Gas
 - $n_e^{\sim} 10^{-3} \text{ to } 10^{-1} \text{ [cm}^{-3}\text{]}$
 - k_BT_e ~ 5 keV (T_e ~ 6 x 10⁷ K)
- 1-2% Galaxies
- $10^{14} 10^{15} M_{\odot}$
- R₅₀₀ ~ 1 Mpc
 - $R_{500}\,{}^{\sim}\,2'$ to 6' at z $\gtrsim 0.2$

The Sunyaev-Zel'dovich effect

The Sunyaev-Zel'dovich (SZ) effect is the inverse Compton scattering of CMB photons by free electrons in the ICM.

The SZE can be broken down into:

1. thermal SZ (tSZ) $y = \frac{\sigma_T}{m_e c^2} \int n_e k_B T_e d\ell$

1. kinematic SZ (kSZ)

$$\frac{\Delta T_{SZE}}{T_{CMB}} = -\tau_e \left(\frac{v_{pec}}{c}\right)$$

X-ray emissivity:
$$\epsilon \propto n_e^2$$

A (very) brief history

Motivation for SZ studies

Attempt to detect the SZ effect

Determine H₀ from SZ+X-ray observations.

Hubble Key Project completed (2001)

Constrain Ω_m , σ_8 from cluster counts

03 Mar 2021 GBO Community Zoom **Charles Romero**

9

Example mass constraints of Zwicky 3146

- We can estimate a mass from the pressure profile
 - via Y-M relations
 - via HSE (in tandem w/ X-ray data)
 - via the Virial Theorem (assume NFW matter profile and uniform f_{gas})
- And compare to the literature

Charles Romero

Mass estimates

• Our mass estimates are generally in agreement with the literature.

Inferred hydrostatic bias

- $b = (M_{True} M_{HSE})/M_{True}$
- For clusters, we generally expect 0.1 ≤ b ≤ 0.3
- We find b =0.07 for when using M_{HSE} and M_{WL,Klein+19}
- Generally, it seems that non-thermal pressure support is low in Zw3146

Fabian+ 2006

Russell+ 2012

ICM Physics:

Beyond a smooth thermal distribution

- X-ray cavities
- Sloshing
- Turbulence*
- Radio relics
- Radio halos
- Radio phoenixes
- Shocks
 - Cold fronts

* $\delta y/\langle y \rangle$ of M-2 data Zw3146

Giacintucci+ 2014

Pressure fluctuations in Zwicky 3146

- Pressure fluctuations can be derived from δy/<y>
 - o <y> = model; δy = y <y>
- A simple quantification of pressure fluctuations (presumably from turbulence) is just to take the RMS of δy/<y>.
 - However, this captures RMS simply due to noise
 - Both noise and <y> vary with radius, making constraints more difficult at large radii.
- Divide the cluster into 3 regions
 - After subtracting the RMS due to noise, we find a residual RMS (from the cluster) of ~0.05 to ~0.07.

Pressure fluctuations in Zwicky 3146

- Taking power spectra of δy/<y> can reveal even more
 - The amplitude is still a measure of total turbulence
- The slope of the power spectrum (in pressure space)

$$\begin{split} P_{y}(k_{\theta}) &\approx P_{P}\left(k_{\theta}\right) \int \frac{\mathrm{d}k_{z}}{2\pi} \left| \tilde{W}(k_{z},\theta) \right|^{2} \\ &\approx N(\theta) \; P_{P}\left(k_{\theta}\right). \end{split}$$

We are currently pursuing this investigation!

Charles Romero

X-ray cavities

Physical scenario Physical scenario No bubble Mag. support equal to relativistic suppor Very hot relativistic gas Cosmic ray electron Cosmic ray proton	$\begin{array}{c c} F_{90 \ \rm GHz} \\ (\rm mJy) \\ \hline \\ -1.1 \ \rm mJy \\ t \\ -0.1 \ \rm mJy \\ -0.8 \ \rm mJy \\ < -0.1 \ \rm mJy \\ 0.0 \ \rm mJy \end{array}$	$\begin{array}{c c} F_{150\ \rm GHz} \\ (\rm mJy) \\ \hline -1.3\ \rm mJy \\ -0.15\ \rm mJy \\ -1.0\ \rm mJy \\ < -0.13\ \rm mJy \\ 0.0\ \rm mJy \end{array}$	$ \begin{array}{c c} F_{260 \ \mathrm{GH}} \\ (\mathrm{mJy}) \\ +0.9 \ \mathrm{mJ} \\ +0.13 \ \mathrm{m} \\ +0.7 \ \mathrm{mJ} \\ < -0.13 \ \mathrm{r} \\ 0.0 \ \mathrm{mJy} \end{array} $	Jy Jy Jy nJy
G-2 on	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	Chandra 124 hours on source

MUSTANG-2 16 hours on source

Charles Romero

Association with radio features?

- Shocks are expected to play a role in CR acceleration what do we actually see?
- "Sausage" cluster (CIZA J2242.8+5301) has a ~2 MPc relic
- Mach numbers calculated from radio and Xray were ~2 sigma apart (Stroe+ 2013 compared to Akamatsu+ 2015)
 - Some values in Hoang+ 2017 bring radio and X-ray into good agreement.

$$\alpha = \frac{\mathcal{M}^2 + 1}{\mathcal{M}^2 - 1} \equiv \alpha_{inj} + \frac{1}{2} \qquad \qquad \frac{P_{\text{down}}}{P_{\text{up}}} = \frac{5\mathcal{M}^2 - 1}{4}$$
$$\frac{T_2}{T_1} = \frac{5\mathcal{M}^4 + 14\mathcal{M}^2 - 3}{16\mathcal{M}^2}$$

Shocks

• SZ is quite uniquely (well) suited for finding shocks and constraining shock parameters (e.g. Mach number)

- <u>In tandem</u> with X-rays, SZ can constrain temperatures
- Simulated observations of Abell 2146 (using values from Russell+ 2012) show that a 16 hour on source w/ MUSTANG-2 can well recover a pressure profile towards the shock front
- Uncertainty of T_{e,SZ/X-ray} ~ T_{e,X-ray} (for 32 hours of MUSTANG-2 and ~420 ks of Chandra time)

2020

Okabe+

Conclusions

- 1. High resolution increases profile resolution critical for high redshift clusters.
 - a. It also opens the door to seeing residuals when removing a bulk component, be it substructure or fluctuations
- 2. Power spectra analysis is a powerful, yet nascent, way to probe turbulence (without velocity dispersion)
 - a. I think there is very much more to be seen in these types of investigations!
 - b. This will offer a direct way to infer hydrostatic bias (and compare with what is inferred when WL measurements exist), and thus has consequences on cosmological constraints from galaxy clusters.
- 3. SZ observations are no longer restricted to measuring the "bulk" SZ signal.
 - a. Though, when we do, we don't need to assume a pressure profile shape.
 - b. We can see substructure *and* infer physical properties of the substructure, and by extension physical mechanisms at play
- 4. Though some of this can be done with SZ alone, joint SZ + X-ray analyses will be very powerful.

- Jonathan Sievers
- Vittorio Ghirardini
- Simon Dicker
- Brian Mason
- Tony Mroczkowski
- Mark Devlin
- Simona Giacintucci

- Craig Sarazin
- Massimo Gaspari
- Nicholas Battaglia
- Matthew Hilton
- Esra Bulbul
- Ian Lowe
- Sara Stanchfield