Insights into intracluster medium physics via the Sunyaev-Zel’dovich Effect

Charles Romero
on behalf of the MUSTANG-2 team
Outline

1. Introduction to galaxy clusters, SZ
2. Profile analyses
 a. X-ray & SZ fits
3. Beyond (standard) profiles
 a. Probes of turbulence
 b. Substructure, heating, CR acceleration (gastrophysics)
Galaxy Clusters

- 80-90% Dark Matter
- 9-18% ICM Gas
 - \(n_e \sim 10^{-3} \text{ to } 10^{-1} \text{ [cm}^{-3}\text{]}\)
 - \(k_BT_e \sim 5 \text{ keV (}T_e \sim 6 \times 10^7 \text{ K)}\)
- 1-2% Galaxies
- \(10^{14} - 10^{15} \text{ M}_\odot\)
- \(R_{500} \sim 1 \text{ Mpc}\)
 - \(R_{500} \sim 2' \text{ to } 6' \text{ at } z \gtrsim 0.2\)
A (very) brief history

First cluster catalogs, optical

1950s

First X-ray satellite

1970s

ROSAT launched

1990

1999

2000

2009

2019

SDSS (2000)

WISE (2009)
eRosita (2019)

Chandra (1999)

XMM (1999)

(ESA)

(NASA)

(ESA)

(NASA)

(NASA)

(SDSS)

(MPE)

(Palomar/Caltech/Caltech Archives)

03 Mar 2021
GBO Community Zoom
A (very) brief history

- 1965: Penzias & Wilson discover CMB
- 1972: SZ effect proposed
- 1991: One of the first credible detections of the SZ effect
- 2007: First light of ACT, SPT
- NASA
- Caltech
- Princeton
- UChicago

03 Mar 2021
GBO Community Zoom
A (very) brief history

MUSTANG sees first light 2008

MUSTANG-2 sees first light 2016
The Sunyaev-Zel’dovich effect

The Sunyaev-Zel’dovich (SZ) effect is the inverse Compton scattering of CMB photons by free electrons in the ICM.

The SZE can be broken down into:

1. **thermal SZ (tSZ)**
 \[
 y = \frac{\sigma_T}{m_e c^2} \int n_e k_B T_e d\ell
 \]

1. **kinematic SZ (kSZ)**
 \[
 \frac{\Delta T_{SZE}}{T_{CMB}} = -\tau_e \left(\frac{v_{pec}}{c} \right)
 \]

X-ray emissivity:

\[
\epsilon \propto n_e^2
\]

03 Mar 2021
GBO Community Zoom

Charles Romero
A (very) brief history

Motivation for SZ studies

- Attempt to detect the SZ effect
- Determine H_0 from SZ+X-ray observations
- Hubble Key Project completed (2001)
- Constrain Ω_m, σ_8 from cluster counts
Cosmology from cluster masses

Cosmological parameters can be constrained by $N(m,z)$

- Mass estimates are the primary limitation towards tighter cosmological constraints
- ACT, SPT have ~1’ resolution.
- MUSTANG-2 has 10” resolution

Credit: M. Markevitch
Marriage+ 2011
De Haan+ 2016

03 Mar 2021
GBO Community Zoom
Example mass constraints of Zwicky 3146

- We can estimate a mass from the pressure profile
 - via Y-M relations
 - via HSE (in tandem w/ X-ray data)
 - via the Virial Theorem (assume NFW matter profile and uniform f_{gas})
- And compare to the literature
Mass estimates

- Our mass estimates are generally in agreement with the literature.
Inferred hydrostatic bias

- \(b = \frac{M_{\text{True}} - M_{\text{HSE}}}{M_{\text{True}}} \)
- For clusters, we generally expect \(0.1 \lesssim b \lesssim 0.3 \)
- We find \(b = 0.07 \) for when using \(M_{\text{HSE}} \) and \(M_{\text{WL,Klein+19}} \)
- Generally, it seems that non-thermal pressure support is low in Zw3146
ICM Physics:
Beyond a smooth thermal distribution

- X-ray cavities
- Sloshing
- Turbulence*
- Radio relics
- Radio halos
- Radio phoenixes
- Shocks
- Cold fronts

* $\delta y/\langle y \rangle$ of M-2 data Zw3146

References:
- Giacintucci+ 2014
- Fabian+ 2006
- Russell+ 2012
Pressure fluctuations in Zwicky 3146

- Pressure fluctuations can be derived from $\delta y/\langle y \rangle$
 - $\langle y \rangle = \text{model}; \delta y = y - \langle y \rangle$
- A simple quantification of pressure fluctuations (presumably from turbulence) is just to take the RMS of $\delta y/\langle y \rangle$.
 - However, this captures RMS simply due to noise
 - Both noise and $\langle y \rangle$ vary with radius, making constraints more difficult at large radii.
- Divide the cluster into 3 regions
 - After subtracting the RMS due to noise, we find a residual RMS (from the cluster) of ~0.05 to ~0.07.

03 Mar 2021
GBO Community Zoom
Charles Romero
Pressure fluctuations in Zwicky 3146

- Taking power spectra of $\delta y/\langle y \rangle$ can reveal even more
 - The amplitude is still a measure of total turbulence
- The slope of the power spectrum (in pressure space)

\[
P_y(k_\theta) \approx P_P(k_\theta) \int \frac{dk_z}{2\pi} |\tilde{W}(k_z, \theta)|^2 \\
\approx N(\theta) P_P(k_\theta).
\]

We are currently pursuing this investigation!
X-ray cavities

<table>
<thead>
<tr>
<th>Physical scenario</th>
<th>$F_{90 \text{ GHz}}$ (mJy)</th>
<th>$F_{150 \text{ GHz}}$ (mJy)</th>
<th>$F_{260 \text{ GHz}}$ (mJy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No bubble</td>
<td>-1.1 mJy</td>
<td>-1.3 mJy</td>
<td>$+0.9 \text{ mJy}$</td>
</tr>
<tr>
<td>Mag. support equal to relativistic support</td>
<td>-0.1 mJy</td>
<td>-0.15 mJy</td>
<td>$+0.13 \text{ mJy}$</td>
</tr>
<tr>
<td>Very hot relativistic gas</td>
<td>-0.8 mJy</td>
<td>-1.0 mJy</td>
<td>$+0.7 \text{ mJy}$</td>
</tr>
<tr>
<td>Cosmic ray electron</td>
<td>$<-0.1 \text{ mJy}$</td>
<td>$<-0.13 \text{ mJy}$</td>
<td>$<-0.13 \text{ mJy}$</td>
</tr>
<tr>
<td>Cosmic ray proton</td>
<td>0.0 mJy</td>
<td>0.0 mJy</td>
<td>0.0 mJy</td>
</tr>
</tbody>
</table>

MUSTANG-2

16 hours on source

Chandra

124 hours on source

03 Mar 2021 GBO Community Zoom

Charles Romero
Association with radio features?

• Shocks are expected to play a role in CR acceleration - what do we actually see?

• “Sausage” cluster (CIZA J2242.8+5301) has a ~2 Mpc relic

• Mach numbers calculated from radio and X-ray were ~2 sigma apart (Stroe+ 2013 compared to Akamatsu+ 2015)
 – Some values in Hoang+ 2017 bring radio and X-ray into good agreement.

\[
\alpha = \frac{\mathcal{M}^2 + 1}{\mathcal{M}^2 - 1} \equiv \alpha_{\text{inj}} + \frac{1}{2}
\]

\[
\frac{P_{\text{down}}}{P_{\text{up}}} = \frac{5\mathcal{M}^2 - 1}{4}
\]

\[
\frac{T_2}{T_1} = \frac{5\mathcal{M}^4 + 14\mathcal{M}^2 - 3}{16\mathcal{M}^2}
\]
Shocks

• SZ is quite uniquely (well) suited for finding shocks and constraining shock parameters (e.g. Mach number)

• In tandem with X-rays, SZ can constrain temperatures

• Simulated observations of Abell 2146 (using values from Russell+ 2012) show that a 16 hour on source w/ MUSTANG-2 can well recover a pressure profile towards the shock front

• Uncertainty of $T_e,_{SZ/X-ray} \sim T_e,_{,X-ray}$ (for 32 hours of MUSTANG-2 and ~420 ks of Chandra time)
Conclusions

1. High resolution increases profile resolution - critical for high redshift clusters.
 a. It also opens the door to seeing residuals when removing a bulk component, be it substructure or fluctuations

2. Power spectra analysis is a powerful, yet nascent, way to probe turbulence (without velocity dispersion)
 a. I think there is very much more to be seen in these types of investigations!
 b. This will offer a direct way to infer hydrostatic bias (and compare with what is inferred when WL measurements exist), and thus has consequences on cosmological constraints from galaxy clusters.

3. SZ observations are no longer restricted to measuring the “bulk” SZ signal.
 a. Though, when we do, we don’t need to assume a pressure profile shape.
 b. We can see substructure and infer physical properties of the substructure, and by extension physical mechanisms at play

4. Though some of this can be done with SZ alone, joint SZ + X-ray analyses will be very powerful.
End

- Jonathan Sievers
- Vittorio Ghirardini
- Simon Dicker
- Brian Mason
- Tony Mroczkowski
- Mark Devlin
- Simona Giacintucci
- Craig Sarazin
- Massimo Gaspari
- Nicholas Battaglia
- Matthew Hilton
- Esra Bulbul
- Ian Lowe
- Sara Stanchfield