

Molecular Chemistry in the Central Molecular Zone

Natalie Butterfield (Green Bank Observatory), Cara Battersby (UConn), Elisabeth Mills (Kanas), Adam Ginsburg (Florida)

Wide-Spread Molecular Enrichment

Figure 1: Example of wide-spread HCN in the CMZ (Figure 2 in Mills & Battersby 2016).

The Central Molecular Zone (CMZ) is known to be molecularly enriched compared to the Disk ISM. Many molecules that are typically only detected in star forming regions of the Galactic Disk, are commonly found in the Galactic Center CMZ (e.g., NH₃, HCN). However the cause of this wide-spread enrichment is not well understood.

3 mm ALMA Observations

<u>M0.10-0.08 Cloud</u> The targeted cloud is located ~25 pc in projection of SgrA*. The cloud is relatively compact (~3 pc) and quiescent, showing no signs of current

star formation (i.e., no radio continuum;

Observations

Butterfield et al. 2018).

We obtained high spatial (<1"; 0.04 pc) and spectral (0.5 km/s) resolution ALMA observations. The observations achieved high sensitivity (2 mJy/beam/channel) and targeted 13 spectral lines (see Table 1). The list of targeted lines includes dense gas tracers (HCN), shock tracers (SiO) and isotopologues (H¹³CN).

Figure 2: 3 mm ALMA data of the HCO+ and SO line detections showing the high angular resolution and large dynamic range of these observations.

Molecular Transition	Rest Frequency (GHz)		
H ¹³ CN (J=1-0)	86.3399214		
$H^{13}CO^+$ (J=1-40)	86.7542884		
SiO (J=2-1)	86.8469600		
C ₂ H (J=3/2-1/2, F=2-1)	87.3169250		
HC ₅ N (J=33-32)	87.8639156		
HNCO (J=4(0,4)-3(0,3))	87.9252370		
HCN $(J=1-0)$	88.6318470		
HCO ⁺ (J=1-0)	89.1885247		
SO $^{3}\Sigma v=0$ (3(2)-2(1))	99.2998700		
HC ¹³ CCN (J=11-10)	99.6518490		
HC ₃ N (J=11-10)	100.0763920		
CH ₃ SH (J=4-3)	101.1391600		
$H_2CS (J=3(1,3)-2(1,2))$	101.4776200		
$^{34}SO_2$ (3(1,3)-2(0,2))	102.0318784		

Table 1: List of targeted spectral lines. All above lines were detected except ³⁴SO₂.

Numerous Molecules Detected in the Quiescent M0.10-0.08 Cloud

31 Line Detections

We detect 21 unique molecular species (31 line detections; Table 2):

•	HCC ¹³ CN	•	HNCO	•	H ₂ CS
•	HC ¹³ CCN	•	SiO	•	H_2C_2O
•	CH ₃ CH ₂ CN	•	SO	•	HCN
•	NH ₂ CHO	•	HCO	•	HCO+
•	NH ₂ CN	•	HC₅N	•	H ¹³ CN
•	CH ₂ CN	•	HC₃N	•	H ¹³ CO ⁺
•	CH ₃ CN ₂	•	C ₂ H	•	CH ₃ SH

Many of these species have only been previously detected in the star forming complex: Sgr B2. However their presence in a quiescent CMZ cloud, could mean these exotic species form well-before the onset of star formation. Further, these exotic molecules could also be wide-spread across CMZ clouds.

Figure 3: Full spectra integrated over the 3mm continuum peak. Annotated are additional line detections.

Molecular Transition®	Rest Frequency (GHz)	Name
H ¹³ CN (J=1-0)	86.33992140	Hydrogen Cyanide, isotopologu
HCO 1(0,1)-0(0,0) J=3/2-1/2, F=1-0	86,70836000	Formyl Radical
$H^{13}CO^+$ (J=1-0)	86,75428840	Formylium, isotopologue
HCO 1(0,1)-0(0,0) J=1/2-1/2, F=1-1	86.77746000	Formyl Radical
CH ₃ CH ₂ CN (10(1,10)-9(1,9))	86,81984500	Ethyl Cyanide
SiO (J=2-1)	86,84696000	Silicon Monoxide
C ₂ H (N=1-0, J=3/2-1/2, F=1-1)	87.28415600	Ethynyl
C ₂ H (N=1-0, J=3/2-1/2, F=2-1)	87.31692500	Ethynyl
C ₂ H (N=1-0, J=3/2-1/2, F=1-0)	87.32862400	Ethynyl
NH ₂ CHO (4(1,3)-3(1,2))	87.84891480	Formamide
HC5N (33-32)	87.86391560	Cyanobutadiyne
HNCO (J=4(0,4)-3(0,3))	87.92523700	Isocyanic Acid
HCN (J=1-0)	88.63184700	Hydrogen Cyanide
CH ₃ NH ₂ (2–1) ^b	~88.668	Methylamine
HCO ⁺ (J=1-0)	89.18852470	Formylium
SO $3\sum v=0$ (3(2)-2(1))	99.29987000	Sulfur Monoxide
HC ¹³ CCN (J=11-10)	99.65184900	Cyanoacetylene, isotopologue
HCC ¹³ CN (J=11-10)	99.66146740	Cyanoacetylene, isotopologue
CH ₃ CH ₂ CN (11(2.9)-10(2.8))	99.68146100	Ethyl Cyanide
CH ₂ CN (5(1,5)-4(1,4) J=11/2-9/2)	99.68929440	Cyanomethyl
NH ₂ CN (5(0,5)-4(0,4))	99,97266400	Cyanamide
Unknown ^c	~ 100.0191	
HC ₃ N (J=11-10)	100.07639200	Cyanoacetylene
$H_2C_2O(5(0,5)-4(0,4))$	101.03663000	Ketene
CH ₃ SH (4(0)-3(0) A)	101.13916000	Methyl Mercaptan
HC ₅ N (38-37)	101,17512710	Cyanobutadiyne
H ₂ CS (J=3(1,3)-2(1,2))	101.47762000	Thioformaldehyde
CH ₂ CN (5(1,4)-4(1,3), J=9/2-7/2)	101.52315320	Cyanomethyl
CH ₂ CN (5(1,4)-4(1,3), J=11/2-9/2)	101.53197390	Cyanomethyl
H ₂ C ₂ O (5(1,4)-4(1,3))	101.98142900	Ketene
NH ₂ CHO (5(1,5)-4(1,4))	102.06438020	Formamide

Butterfield et al. 2020 (in prep)

Potential for Argus144 in CMZ Studies

The fast survey speeds and high sensitivity of the Argus144 instrument would allow for us to determine if these exotic 3 mm molecules (e.g., H_2C_2O) are widespread throughout CMZ clouds. Further, the advanced capabilities and multiple pixels of the Argus144 receiver would allow for quick mapping time to achieve the sensitivity needed to detect these molecules (~2 mJy/beam).

Argus Instrume