Fast Radio Bursts (FRBs)

Pulsars

while the other one seen as just a single pulse and has a dispersion measure consistent with being either an FRB, an RRAT, or a long-period pulsar.

Arecibo, a standard dedispersion technique was applied to search for candidate radio signals at dispersion measures up to 1000 pc cm$^{-3}$. From the first 7% of GALFACTS data, 27 known pulsars have been detected by the search method, as well as 4 strong, previously unknown candidate objects. Three of these candidates have dispersion measures and periods consistent with their being pulsars, while the other one seen as just a single pulse and has a dispersion measure consistent with being either an FRB, an RRAT, or a long-period pulsar.

Dispersion: ionized media introduce a frequency-dependent lag to the time of arrival for electromagnetic waves, quantified by the "Dispersion Measure" (DM).

Total of 34 significant signals

- 27 objects matched with entries in pulsar catalogs
- 3 of these PSRs were detected on up & down scans
- 4 unlisted in major pulsar, RRAT, or FRB catalogs

GALFACTS Data

Moving Forward

1) Follow-up observations of unknown sources
2) Continue processing GALFACTS data
3) Expand DM range from 1000 to 3000+ pc cm$^{-3}$
4) Improve analysis methods and search pipeline
5) Obtain more accurate measurements

References and Acknowledgements

This project was funded by the National Science Foundation through the Research Experience for Undergraduates program at the Green Bank Observatory and National Radio Astronomy Observatory. The Green Bank Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is a facility of the National Science Foundation operated under cooperative agreement by the University of Central Florida.