RAMPS: The Radio Ammonia Mid-Plane Survey

Taylor Hogge GBO Survey Workshop 11/14/18

Collaborators

- James Jackson (SOFIA)
- Ian Stephens (CfA)
- Scott Whitaker (BU)
- Jonathan Foster (Yale)
- Anish Roshi (NRAO)

Why is high-mass star formation important?

- Dominate the energetic input and chemical enrichment into the interstellar medium (ISM)
- Disrupt surrounding medium through outflows, H II regions, and supernovae
- ISM chemistry and kinematics is driven by the life cycle of high-mass stars

0.5°

Molecular clump (M \sim 200–5,000 M $_{\odot}$, R \sim 1 pc)

Collapse of pre-stellar cores (M \ge 1 M_{\odot}, R \sim 0.05 pc)

Cores collapse into protostars

Protostars launch outflows

Credit: ALMA Observatory

Begin fusion, ionize surrounding material

H II regions expand and disrupt surrounding clump

Supernovae inject turbulence into ISM

Early Stages

Early stages are hard to observe:

- Rare
- Form quickly
- Form within opaque gas and dust

Open Questions

- How do cluster-forming clumps evolve?
- How does gas flow along filaments?
- What is the distribution of high-mass star formation in the Galaxy?
- How does maser activity in star-forming regions evolve?

Continuum Surveys of the Galactic Plane

- 1.1 mm Bolocam Galactic Plane Survey (BGPS)
- 870 μm Apex Telescope Large Area Survey of the Galaxy (ATLASGAL)
- 70-500 μm *Herschel* Infrared Galactic Plane Survey (HiGAL)

ATLASGAL: Schuller, Menten, Contreras et al. 2009

Limitations of Continuum Surveys

- Blending of emission along line of sight
- Uncertain assumptions used to derive dust temperatures and column densities
- No kinematic information
- Unknown distances, thus size, mass, luminosity, and Galactic position are also unknown

ATLASGAL: Schuller, Menten, Contreras et al. 2009

RAMPS

- Molecular line survey of Galactic mid-plane
- Uses the Green Bank Telescope (GBT)
- Primary lines are NH₃ inversion lines and an H₂O maser line

NH₃ inversion spectra of a dense molecular clump

- Brightness ratios robustly indicate gas temperature
- Hyperfine lines are sensitive to optical depth
- Traces dense gas (~ 10⁴ cm⁻³)
- Velocity yields kinematic distances and reveals internal motions

- Brightness ratios robustly indicate gas temperature
- Hyperfine lines are sensitive to optical depth
- Traces dense gas (~ 10⁴ cm⁻³)
- Velocity yields kinematic distances and reveals internal motions

- Main line brightness ratios robustly indicate gas temperature
- Hyperfine lines are sensitive to optical depth
- Traces dense gas (~ 10⁴ cm⁻³)
- Velocity yields kinematic distances and reveals internal motions

- Brightness ratios robustly indicate gas temperature
- Hyperfine lines are sensitive to optical depth
- Traces dense gas (~ 10⁴ cm⁻³)
- Velocity yields kinematic distances and reveals internal motions

Galactic Longitude

- Brightness ratios robustly indicate gas temperature
- Hyperfine lines are sensitive to optical depth
- Traces dense gas (~ 10⁴ cm⁻³)
- Velocity yields kinematic distances and reveals internal motions

Advantages of H₂O Masers

Credit: mwit.ac.th/~physicslab/hbase/mod5.html

Microwave Amplification by Stimulated Emission of Radiation

Advantages of H₂O Masers

- Traces regions of active star formation
- Used to measure distances to star-forming regions across the Galaxy through parallax
- Associated with Asymptotic Giant Branch (AGB) stars

Advantages of H₂O Masers

- Traces regions of active star formation
- Used to measure distances to star-forming regions across the Galaxy through parallax
- Associated with Asymptotic Giant Branch (AGB) stars

RAMPS

- High density gas
- Gas temperature
- NH₃ column density
- Linewidths (turbulence)
- Kinematics (ordered flows)
- Kinematic distances

RAMPS

Molecule	Transition	Frequency [MHz]	E_{upper}/k [K]	Number of Receivers
NH_3	(J,K) = (2,2)	23722.60	64	7
$\rm NH_3$	(J,K) = (3,3)	23870.08	124	7
NH ₃	(J,K) = (4,4)	24139.35	201	7
$\rm NH_3$	(J,K) = (5,5)	24532.92	295	7
$\rm CH_3OH$	${ m J_{K_p}} = 10_1 - 9_2 \; A^-$	23444.78	143	7
$\mathrm{HC}_{5}\mathrm{N}$	J = 9 - 8	23963.90	6	7
$\mathrm{HC}_{5}\mathrm{N}$	J = 8 - 7	21301.26	5	1
$\mathrm{HC_7N}$	J = 19 - 18	21431.93	10	1
$\rm CH_3OH$	$\rm J_{K_p} = 12_2 - 11_1 \ A^-$	21550.34	479	1
HNCO	$J(K_p,K_o) = 1(0,1) - 0(0,0)$	21981.57	1	1
H_2O	$J(K_p, K_o) = 6(1, 6) - 5(2, 3)$	22235.08	644	1
CCS	J = 2 - 1	22344.03	2	1

- 20 deg² molecular line survey of Galactic midplane in 1st Quadrant
- Mapping in 13 lines
- NH₃ inversion transitions and H₂O maser line are most important
- Additional lines are CH₃OH maser lines and several high density tracers

The Green Bank Telescope

- Large collecting area (100 meter dish)
- K-band Focal Plane Array (KFPA; 18-27.5 GHz) is a 7-element array
- VEGAS spectrometer has multi-line capabilities and works with receiver arrays
- Fast/sensitive K-band mapping (T_{rms}~ 0.15 K in 0.2 km/s channels), high spatial resolution (32" beam), and high spectral resolution (0.02 km/s)

Credit: gb.nrao.edu

Current Status

- RAMPS was allocated 210 hours of GBT time for a pilot study to test the feasibility of the project and to help commission the VEGAS spectrometer
- Pilot survey completed (Hogge et al. 2018), mapped 6.5 deg²
- Allocated >400 hours to complete the survey
- Use gbt-pipeline and gbtgridder software to reduce data, custom pipeline for processing
- Data to be released publicly after verification at sites.bu.edu/ramps (only NH₃(1,1), (2,2), and H₂O pilot data currently available)

Results from RAMPS Pilot Survey

 $NH_3(1,1)$ integrated intensity map of RAMPS fields L23 and L24

NH₃ Modeling with PySpecKit

Fit Parameters

- Temperature
- Column density
- Linewidth
- Velocity
- Filling Fraction

Temperature

Column Density

Velocity

Linewidth

Filling Fraction

Comparison with HOPS – NH₃

Comparison with HOPS – H_2O

- RAMPS detected 82 masers in L23-24, while HOPS detected 15.
- RAMPS detected 325 in 6.5 deg², HOPS detected 540 in 100 deg².

Clump Evolution

- Classify evolutionary state with MIR images
- NH₃ data will give temperature, column density, and kinematics
- Look for trends as a function of evolutionary state

Classify with MIR Data

Quiescent

Protostellar

H II Region

Color is GLIMPSE and MIPSGAL 3.6 μ m (blue), 8 μ m (green), and 24 μ m (red). Contours are RAMPS NH₃(1,1) integrated intensity.

NH₃ Rotational Temperature

Protostellar

H II Region

NH₃ Column Density

Linewidth

Extreme Kinematics in G23.33-0.30

Linewidth of G23.33-0.30 is ~20 km/s, 10 X larger than typical NH₃-emitting clumps. Rare NH₃(3,3) maser may be associated with high-mass star formation.

VLA data reveals multiple NH₃(3,3) masers are they tracing outflows?

NH₃ kinematics reveal velocity gradient across filament

Hogge et al. (in prep)

SNR W41 interacting with 77 km/s filament?

Hogge et al. (in prep)

Is 60 km/s component accelerated gas?

Hogge et al. (in prep)

SMA and ACA detect cores: is the star formation process being triggered, inhibited, neither?

Hogge et al. (in prep)

Summary

- Many open questions, only partial answers from continuum surveys
- Molecular lines provide additional information, RAMPS and GBT offer significant improvements in mapping NH₃ and H₂O
- RAMPS pilot detected ~500 clumps and can measure temperature, column density, line width, and velocity
- Large surveys are critical for the study of highmass star formation and allow for the discovery of rare and unique sources
- Publicly available RAMPS dataset will support many future scientific investigations

Questions?

Velocity Corresponds to Distance

