GBT Surveys for H₂O Megamasers

Jim Braatz (NRAO)

Mark Reid Jim Condon Christian Henkel Jenny Greene Dom Pesce Feng Gao Violetta Impellizzeri Cheng-Yu Kuo Anca Constantin Lei Hao Wei Zhao Fred Lo

Primary Goals of H₂O Megamaser Studies

- I. Measure H_0 using geometric distances to galaxies directly in the Hubble flow
- 2. Measure "gold standard" masses of SMBH
- 3. Determine the geometry and physical conditions of AGN accretion disks on sub-pc scales
- 4. Measure SMBH peculiar motions

Tension in Measurements of H₀

<u>Planck Prediction:</u> $H_0 = 67.8 + - 0.9 \text{ km s}^{-1} \text{ Mpc}^{-1}$

(Ade et al. 2016)

Measurements using standard candles: $H_0 = 73.5 + /- 1.6 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Riess et al. 2018) $H_0 = 74.3 + /- 2.6 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (Freedman et al. 2012)

A Conceptual View of a Disk Megamaser

 $D = \frac{r}{\vartheta}$ V_r^2

r

a = -

Direct Geometric Measurement of H_0 with Megamasers

The Megamaser Cosmology Project has the goal of determining H_0 by measuring geometric distances to galaxies in the Hubble flow.

- 1. Survey with the GBT to identify maser disk galaxies
- 2. Image the sub-pc disks with the High Sensitivity Array (VLBA+GBT+EB+VLA)
- 3. Measure accelerations in the disk with GBT monitoring
- 4. Model the maser disk dynamics and determine distance to the host galaxy

UGC 3789

6

UGC 3789 dynamic spectra

NRAO

Pesce et al. 2015

8

UGC 3789: Systemic Features

NRAO

Bayesian Estimation of the H_0 PDF

- We fit a warped disk model with a MCMC approach, and use the Metropolis-Hastings algorithm to choose successive trial parameters
- Measured: (x, y, v_{LOS} , a_{LOS}) for each maser spot
- Fit ϑ_r and ϕ for each maser spot
- Fit v_{sys} and marginalize over global parameters for M_{BH} , dynamical center, and warp
- Provide V_{pec} and fit H_0 directly

Alternative Modeling and MC Sampling

H₀ from Direct Geometric Distances to Megamasers

 $H_0 = 69.9 \pm 3.8 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (5%)

UGC 3789	49.6 ± 5.1 Mpc	$H_0 = 76 \pm 8$	(Reid et al. 2013) updated
NGC 6264	137 ± 19 Mpc	$H_0 = 68 \pm 9$	(Kuo et al. 2013)
NGC 6323	107 ± 42 Mpc	$H_0 = 73 \pm 26$	(Kuo et al. 2015)
NGC 5765b	126 ± 11 Mpc	$H_0 = 66 \pm 6$	(Gao et al. 2016)
CGCG 074-064	94 ± 13 Mpc	$H_0 = 73 \pm 10$	(Pesce et al. in prep) prelim

With final analysis of four additional maser disk galaxies, we expect to improve the measurement to $\sim 4\%$ within a year

Primary Goals of H₂O Megamaser Studies

- I. Measure H_0 using geometric distances to galaxies directly in the Hubble flow
- 2. Measure "gold standard" masses of SMBH
- 3. Determine the geometry and physical conditions of AGN accretion disks on sub-pc scales
- 4. Measure SMBH peculiar motions

Megamasers provide precise recession velocities of the SMBH

VLA HI Maps to determine Galaxy Recession Velocity

VLA HI maps

(Pesce et al. 2018)

VLA HI Maps to determine Galaxy Recession Velocity

Modeled Spectral Profiles from VLA HI maps. (Pesce et al. 2018)

Detecting Kinematically Offset SMBH

Maser systems determine ~ 1 km/s LOS velocities for SMBH. Compare to host galaxy velocities to detect peculiar motion. (Pesce et al. 2018)

GBT Megamaser Surveys

- Candidate lists are mainly AGNs
- MCP has focused on narrow-line AGN identified through optical emission lines
- Other large surveys have focused on ULIRGs, early types, disturbed, and Sy 1
- Direct calibration of Cepheid scale is possible with NGC 4258 but maser distances are unlikely calibrators for other standard candles

Some Technical Details

- We "nod" 2 beams of the 7-beam KFPA
- 10 minutes on-source per galaxy, longer integrations to characterize the spectrum fully
- 22.235 GHz line at z < 0.05 so $v_{sky} \sim 21.5$ GHz
- All-sky coverage (should enable flexibility in scheduling, but it is not easy with the PST)
- Home-built pipeline in GBTIDL for uniform reduction; detections reduced with care by hand

Progress with Megamaser Surveys

- 180 galaxies detected out of > 4000 observed
 - 37 show spectra indicative of a disk and are suitable for M_{BH} measurement
 - 10 suitable for distance measurement
 - Primary sample for MCP surveys: Type 2 AGNs at z < 0.05

JRAC

.

JRA(

.

Improving the Measurement of H₀ with Megamasers: Brute Force Continuation of the MCP

Incorporation of IR colors and luminosities for survey candidate galaxies can improve maser detection rate for disk masers. (Kuo et al. 2018)

Public Wiki	Jump	Search
Main Hello Jim Braatz	You are here: NRAO Public Wiki > Main Web > TWikiUsers > JimBraatz > MegamaserCosmologyProject (2018-11-12, JimBraatz)	lit Attach Print version
 Log Out Create personal sidebar 	The Megamaser Cosmology Project (MCP)	
 Main Web Greate New Topic Index Search 		Project Description MCP Overview
Changes Notifications RSS Feed Statistics Preferences	Project Overview	Results MCP Publications MCP VLBI Results
 ARAO Public Wiki Main ALMA CDL 	The Megamaser Cosmology Project (MCP) is an NRAO Key Science Project to measure the Hubble Constant, H0, by determining geometric distances to circumnuclear 22 GHz H2O megamasers in galaxies well into the Hubble flow. In combination with the recent, exquisite observations of the Cosmic Microwave Background (CMB) by WMAP and Planck,	Extragalactic 22 GHz Maser Catalog GBT Survey Results
CICADA	these measurements provide a direct test of the standard cosmological model and constrain the equation of state of dark energy. The MCP has so far determined H0 = 69.3 ± 4.2 km/s/Mpc from published observations of UGC 3789 (Reid et al.	Internal Resources
DSAA	2013), NGC 6264 (Kuo et al. 2013), NGC 6323 (Kuo et al. 2015) and NGC 5765b (Gao et al. 2015). Work on other galaxies is in progress, and we expect to achieve a 4% or better measurement of H0 when the project is completed	Group Resources
FASR GB HPC	around the end of 2017. Our measurement so far is intermediate between the Planck prediction of H0 in the context of the standard cosmological model (H0 = 67.8 ± 0.9 km/s/Mpc; Ade et al. 2015) and recent measurements based on standard candles (H0 = 74 ± 2.5 km/s/Mpc).	
JVLA KPAF Library	Main Results of MCP to Date	
Metrics Mit43M NGVLA	 We have so far measured H0 = 69.9 +/- 3.8 km/s/Mpc based on maser distances to UGC 3789 (Reid et al. 2013), NGC 6264 (Kuo et al. 2013), NGC 6323Kuo et al. 2015, and NGC 5765b Gao et al. 2016 and work in progress on CGCG 074-064. In this combined estimate for H0, we apply an update to the modeling of UGC 3789 (more MCMC trials leading to convergence) that measured H0 = 76 +/- 8 km/s/Mpc for that one galaxy. 	

A catalog of GBT megamaser surveys is organized and maintained (by me) and hosted on MCP webpage

You are here: NRAO Public Wiki > Main Web > TWikiUsers > JimBraatz > MegamaserCosmologyProject > PublicWaterMaserList (2018-11-12, JimBraatz)

Edit wiki text Edit

Attach Print version

A Catalog of Galaxies Detected in 22 GHz H2O Maser Emission

Jim Braatz (NRAO)

Updated November 10, 2018

Count	t Source Name	RA (J2000)	Dec (J2000)	Vsys (km/s)	- Lum -	Class	Notes	Discovery Reference
1	NGC 23	00:09:53.6	+25:55:23	4565	180	Ľ.		Braatz08
2	NGC 17	00:11:06.5	-12:06:26	5931	<10	ie -		Greenhill09
3	J0011-0054	00:11:45.2	-00:54:31	14384	527			6A09
4	J0027+4544	00:27:25.3	45:44:27	12003	507			9C51/10C19
5	IC10	00:20:17.9	+59:18:31	-350	0.02	SF	9	Henkel86 (multiple positions)
6	M31	00:42:44	+41:16:09	-300		SF		Amiri & Darling 2016 (multiple positions)
7	NGC 235A	00:42:52.8	-23:32:28	6664	?	e., 1		Kondratko03
8	NGC 253	00:47:33.1	-25:17:18	241	0.2	SF?	0.17	Ho87
9	Mrk 348	00:48:47.1	+31:57:25	4507	400	J		Falcke00
10	SMC	00:52:45	-72:49:43	158		SF		Breen+ 2013 (multiple positions)
11	NGC 291	00:53:29.9	-08:46:04	5705	74	6 C -		6A09
12	ESO 013-G012	01:07:02.2	-80:18:28	5047	500	k.		Greenhill02
13	J0109-0332	01:09:45.10	-03:32:32.8	16369				13A236
14	Mrk 1	01:16:07.2	+33:05:22	4780	50	D?		Braatz94
15	NGC 520	01:24:35.07	+03:47:32.7	2281	1	SF?	6 - C	Castangia08
16	J0126-0417	01:26:01.66	-04:17:56.2	5639	112	D?		6dF
17	M33	01:33:16.5	+30:52:50	-180	0.3	SF		Churchwell77 (multiple positions)
18	NGC 591	01:33:31.2	+35:40:06	4547	25	D?		Braatz04

A catalog of all galaxies detected in the 22 GHz line is maintained on the MCP webpage

You are here: NRAO Public Wiki > Main Web > TWikiUsers > JimBraatz > MegamaserCosmologyProject > PublicWaterMaserList (2018-11-12, JimBraatz)

Edit wiki text Edit Attach

Print version

A Catalog of Galaxies Detected in 22 GHz H2O Maser Emission

Jim Braatz (NRAO)

Updated November 10, 2018

A catalog of all galaxies detected in the 22 GHz line is maintained on the MCP webpage

Index of /~jbraatz/AllH2O

Pipeline-processed spectra of all GBT public data from extragalactic H2O observations is available from the MCP website

Source	RA	Dec	Velo	Date-Obs	Tsys	Int	Rms1	Vlol	Vhi1	Rms2	V102	Vhi2
RXSJ00001+0523	00 00 11.78	+05 23 17.4	11992	2016-02-12	51.3	3	10.9	10631	13365			
KUG2358+330	00 00 58.10	+33 20 38.0	12921	2012-11-17	36.5	8	4.0	11461	14395			
0001233+4733537	00 01 23.30	+47 33 53.7	5237	2010-11-02	39.5	10	3.6	3848	6639	3.5	6358	9196
NGC-7805	00 01 26.76	+31 26 01.4	4850	2006-01-05	43.8	5	6.0	3464	6248	5.6	5968	8799
NGC-7806	00 01 30.06	+31 26 30.7	4768	2006-01-05	42.2	5	6.1	3383	6166	5.4	5885	8715
0001383+2329011	00 01 38.32	+23 29 01.1	4382	2010-12-24	38.9	10	3.8	3000	5776	4.1	5497	8319
0001419+2329452	00 01 41.90	+23 29 44.8	4393	2010-12-24	38.3	10	3.5	3011	5787	3.7	5508	8330
UGC12915	00 01 41.92	+23 29 45.3	4336	2005-02-02	27.1	28	1.5	3994	6788			
0001523+4020109	00 01 52.30	+40 20 10.7	13568	2010-11-13	36.9	10	3.1	12102	15048	3.1	14751	17747
0001523+4020109	00 01 52.30	+40 20 10.9	13568	2010-11-29	45.1	10	4.1	12102	15048	3.9	14751	17747
CGCG517-014	00 01 58.49	+36 38 57.1	9609	2012-11-17	38.8	10	3.8	8179	11051			
NGC7811	00 02 26.47	+03 21 06.8	7650	2013-12-24	41.9	9	4.4	6238	9074			
Mrk334	00 03 09.95	+21 57 37.9	6600	2003-04-27	28.1	36	1.8	5198	8014			
UM016	00 03 10.02	+04 44 56.2	17358	2005-09-28	45.6	44	2.0	16982	20021			
NGC7814	00 03 14.90	+16 08 44.1	1050	2010-04-11	34.9	10	3.1	-301	2414	3.2	2140	4900
UGC13	00 03 29.20	+27 21 05.9	7690	2010-04-11	31.9	10	2.9	6278	9115	2.6	8829	11713
NGC7808	00 03 32.10	-10 44 41.0	8787	2016-02-04	44.3	10	4.4	7454	10132			
MRK335	00 03 45.21	+20 12 10.4	7735	2009-01-22	38.6	10	3.6	6323	9160	3.5	8874	11759
NGC-7817	00 03 58.91	+20 45 08.3	2309	2005-12-14	42.4	5	5.4	946	3684	6.3	3408	6192
NGC-7819	00 04 24.54	+31 28 19.3	4958	2006-01-05	39.7	5	5.9	3571	6357	5.2	6077	8910
000435+005055	00 04 35.22	+00 50 55.0	6295	2006-03-29	46.5	10	4.2	4896	7707	4.1	7424	10281
Mrk335	00 06 19.53	+20 12 10.5	7730	2012-11-15	35.7	10	3.7	6318	9155			
Mrk335	00 06 19.53	+20 12 10.6	7730	2011-02-23	40.2	10	3.6	6318	9155	3.3	8869	11754
J0006+1419	00 06 19.61	+14 19 38.7	5452	2014-11-03	50.8	10	5.8	4061	6856	18.2		
UGC46	00 06 21.70	+17 26 01.0	5506	2010-01-15	36.3	10	3.2	4114	6910	2.8	6629	9472
UGC00047	00 06 38.36	+17 17 03.2	873	2003-12-22	33.3	28	1.8	537	3268			
UGC00050	00 06 40.16	+26 09 16.1	7552	2005-02-01	26.8	24	1.6	7202	10056			
UGC52	00 06 49.48	+08 37 42.7	5257	2007-12-20	52.2	10	5.1	3867	6659	4.7	6378	9217
NGC-1	00 07 15.83	+27 42 29.1	4545	2005-12-14	41.1	5	5.9	3162	5941	6.7	5661	8486
2MASXJ00082041+	00 08 20.50	+40 37 57.0	13389	2013-05-03	69.4	10	7.7	11925	14867	1.1		1.1.1
NGC-12	00 08 44.81	+04 36 44.9	3940	2005-10-02	60.6	5	8.3	3802	6592	9.1	1333	4078

NRAO

An ascii catalog of all GBT observations of extragalactic H2O observations is maintained on the MCP website

The Future of H_0 with Megamasers: the ngVLA

- 216 x 18m dishes with compact core and outrigger long baselines
- Order of magnitude sensitivity improvement
- Immediate gains by remeasuring known maser disks
- ~1% H₀ could be achieved, e.g., with ~50 distances of ~7% each

Thoughts and Suggestions

- Linked VLBI time is essential to all of the scientific goals of surveys for megamaser disks
- Linked GBT or VLA time is essential for spectral line monitoring needed to measure galaxy distances
- Web hosting of observed galaxies by NRAO/GBO is effective. It is currently done as a service to the community.
- Megamaser surveys could serve as an effective filler/backup project for good weather conditions
- Availability of weather (wind/opacity) and ops logs as an attachment to the data would assist pipelines and identifying data reliability
- GBA/GBT will provide essential, sensitive long baselines in the ngVLA era

The End

. .