GBTIDL User’s Guide

Kristen Thomas, Jim Braatz, and Bob Garwood

April 30, 2012

ii

Contents
(1__Introductionl 1
[LL1 How To Use This Document|. o 1
C2"What 3s GBTIDLT . . . v v vt e e e e e e e e e e e e 1
L3 Main Features of GBTIDII.o oo oo 1
.4 Where can T run GBTIDL?o o 1
[1.L6 Obtaining GBTIDL| 1
[L6 User Documentation] 2
2 uick Start Example o T 2
[3 Getting Started| 2
8.1 Starting GBTIDL|. 0 3
3.2 Getting Help with Commands|. 3
[4 Accessing Data Files| 3
4.1 Working Online| e 3
4.2 Accessing SDFITS Data Atter an Observing Runl oo 0., 4
4.3 Creating SDFITS Files|. o o 0 oo o 4
4.4 Accessing SDFITS Files| o o o o 5
4.5 Accessing Multiple SDFTTS Files Simultaneously| 5
4.6 Summary of the Location of Datal. 0oL 5
4.7 Listing the Contents of Data Files| 6
[6_Data Containers| 7
BT OVEIVIEW] .« « o o oo o o e e e e e e 7
5.2 Data Containers and Pointers| o o o 8
5.3 About the Primary Data Container|. 8
p.4 Examining and Changing Data Containers|., 9
.5 Data Container Operations| 9
6D Rotrioval [Call onl 10
6.1 Calibrating Data] o 10
6.2 Retrieving Individual Records| o o 11

6.3 Getting Scan Header Information|. oo o000 12

[T _The Plotter]

|8 Data Analysis|

8.1 Using the Stack|
8.2 Removing Baselines|
8.3 Averaging Datal.
8.4 Averaging Data not Aligned in Frequency| .
8.5 Smoothing Data]
8.6 Fitting Gaussian Profiles|.

8.7 Introduction to Flagging and Blanking Datal
...................

9.1 €eD| . v e e e e e e e e e e e
9.2 nsavel.
9.3 Retrieving Data from the Output File| . . .

[LO Writing Your Own Procedures|

[A The !g Structure

[B Tips on Using Data Containers for Experts|

|C Contents of the Spectrum Data Container|

DT Fthe Conti D C Therl

iii

13
13
16
16
17
17
17
18
18

18
18
19
21
22
22
23
23
25
25
25
26
27
27

27
28
28
29

29

31

33

35

37

iv

[E- More about Flagging Datal 39
[E.1 Using Flags in GBTIDL| 39
.2 Using Flags in Data Retrieval and Averaging Procedures|. 41
IE.3 Listing Flags| o o 41
[E.4 Undoing Flags| o 42
[E.5 Weighting Issues not Addressed by this Flagging Scheme|. 43

ther eatures an xamples 43
|[F.1 Customizing the output of the list procedure| 43
.2 Making postage stamp plots| L L 45
IF'.3 Example reduction sessions with sample data sets|. 46

|G Reducing Continuum Data] 50

(H_More Informationl 50
[H.1 Contributing Procedures|. 50
IH.2 Bugs and Enhancements| 50
[H.3 General Hints and Tips| e 50

IH.3.1 Calibrating Datal 50
IH.3.2 Recovering from Errors| oo 50
M2 GBTIDLFAQ] - o o o oo e 51
H4.1 Do lneed to know IDL torun GBTIDL? 51
IH.4.2 What is the latest version of GBTIDLY 51
|H.4.3 What version of IDL is required to run GBTIDLY 51
|H.4.4 Everything was working fine, then I encountered an error and now GBTIDL is not |
WOrKing. HOW dO L TECOVETT| « « « v v v o e e i e e e e e e e e 51

|H.4.5 The plotter is not responding, how do [recover? 51
|H.4.6 I have a collection of IDL procedures. Where should I put them so that I can use |

[them in GBTIDL? . . . o o 0o oo o 51

IH.4.7 How do I change the Y-axis label?| 51
IH.4.8 Can I use GBTIDL with data from telescopes other than the GBT™? 52
[H.5 Who Developed GBTIDL?|. 53
[H.6 Installing GBTIDL ona Mac| 53

1 Introduction

1.1 How To Use This Document

This User’s Guide is one part of the documentation package for GBTIDL. It is recommended that new
users read chapters 1 through 10 sequentially. The appendices provide supplemental material. In addition
to this document, there is also an online User Reference, a one-page Quick Reference Guide, several
examples and FAQs, and detailed descriptions of internal data structures. All GBTIDL documentation
can be accessed online from fhttp://gbtidl.nrao.edu.

1.2 What is GBTIDL?

GBTIDL is an interactive package for the reduction and analysis of spectral line data taken with the
Robert C. Byrd Green Bank Telescope (GBT). GBTIDL is written entirely in IDL. There is limited
support in GBTIDL for GBT continuum data, but it is mainly intended for spectral line data from the
spectrometer or spectral processor.

1.3 Main Features of GBTIDL

e GBTIDL is easy and effective The GBTIDL package consists of a set of straightfor-
ward, yet flexible, calibration, averaging, and analysis procedures modeled after the
UniPOPs and CLASS data reduction philosophies.

e Plotter GBTIDL features a customized plotter with many built-in visualization features.

e Support for advanced users GBTIDL has Data I/O and toolbox functionality that can
be used for more advanced tasks.

e Data structures GBTIDL makes use of data structures for storing spectra along with
their headers.

e Online feature GBTIDL can be run in online mode while observing with the GBT to
give users rapid access to the most recent data.

1.4 Where can I run GBTIDL?

GBTIDL is installed on the Linux computing systems at NRAO-Green Bank and NRAO-Charlottesville.
It is also available for installation at other sites. An IDL license and installation with IDL 6.0 or later are
required to run GBTIDL. GBTIDL has been tested on both Linux and Apple Mac installations. If you
do not have an IDL license, it is possible to connect to a Green Bank computer from your remote site or
sign up for time on a machine in Charlottesville that is dedicated to supporting remote users. Contact
Jim Braatz or Bob Garwood for further information. In Green Bank and Charlottesville, GBTIDL is
installed in /home/gbtidl/release/gbtidl. The NRAO developed IDL code is found starting in the pro
subdirectory.

1.5 Obtaining GBTIDL

GBTIDL is available as a tar file from the GBTIDL home page at
http://gbtidl.nrao.edu. Simply click on the Download GBTIDL Now link and follow the instruc-
tions.

http://gbtidl.nrao.edu

1.6 User Documentation

The following documents are available from links on the http://gbtidl.nrao.edu homepage:

e The GBTIDL Quick Reference Guide gives a topical summary of the IDL procedures and functions.

e The User Reference|provides a list of GBTIDL procedures with detailed descriptions of parameters
and usage examples.

e The Contributed Code Reference describes user contributed procedures.

e |Calibration of GBT Spectral Line Data in GBTIDL] describes how you can optimize calibration of
your data.

Other documents that may be useful to GBTIDL users include:

e The text Practical IDL Programming by Liam E. Gumley (2001) is a useful resource for beginning
and expert IDL users.

e Using IDL to Manipulate and Visualize Scientific Data by Bill Davis
(http://nstx.pppl.gov/nstx/Software/IDL/idl_intro.html)

e IDL Tutorials by Carl Heiles and Tim Robishaw
(http://astro.berkeley.edu/heiles/handouts/handouts_idl.html)

2 Quick Start Example of GBTIDL

This section shows the look and feel of the command line user interface in GBTIDL. The commands will
be described later in this document.

% gbtidl ; Start GBTIDL from the unix prompt

GBTIDL -> filein ; Specify an input file using the file selection GUI
GBTIDL -> summary ; Give a summary of the scans in the opened data file
GBTIDL -> getfs, 9 ; Retrieve, calibrate, and plot a frequency switched

; spectrum (other observing modes use different commands)

GBTIDL -> setregion ; Set region used to determine baseline

GBTIDL -> nfit,2 ; Specify that a 2nd order baseline will be used

GBTIDL -> baseline ; Fit and subtract a baseline

GBTIDL -> fitgauss ; Fit a Gaussian profile to the plotted spectrum. The mouse

; 1is used to set initial guesses

GBTIDL -> stats ; For the displayed spectrum, show statistics such as
; the RMS, maximum and minimum x and y values
GBTIDL -> print_ps ; Write the current spectrum to a postscript file

GBTIDL -> fileout, ’mydata.fits’ ; Specify the output file name for saved data
GBTIDL -> keep ; Save the spectrum currently displayed

GBTIDL -> exit ; Exit GBTIDL

3 Getting Started

This section describes how to begin a GBTIDL session and what to do if you need help understanding
a command.

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/QRG_release.pdf
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/index.html
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/contrib/index.html
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf
http://nstx.pppl.gov/nstx/Software/IDL/idl_intro.html
http://astro.berkeley.edu/~heiles/handouts/handouts_idl.html

3.1 Starting GBTIDL

To start GBTIDL simply type the following command at the unix prompt from any NRAO computer
running Linux in Green Bank or Charlottesville.

% gbtidl

3.2 Getting Help with Commands

In addition to the GBTIDL User Reference, you can get help within GBTIDL via the usage command.
For example, to get help with the show command:

e usage, ’show’ to get a list of the optional arguments.

GBTIDL -> usage, ‘show’

Usage: show[, dc] [, color=color] [, /defaultx] [, /smallheader] [, /noheader]

e usage, ’show’, /verbose to get a complete description of what the command does, what key-
words can be used, examples, and the path for the source code.

e usage, ’show’, /source to see the source code behind the command.

4 Accessing Data Files

GBTIDL reads SDFITS files generated by the sdfits filler program run in Green Bank. During an
observation the data are automatically filled into the SDFITS format in real time and these data can be
accessed in online mode. After an observing session, data are accessed in offfine mode.

4.1 Working Online

In Green Bank, recent raw (unfilled) data can be found in /home/gbtdata. As scans are completed,
SDFITS files and their corresponding index files and an empty flag file are automatically generated in
the directory /home/sdfits. Files are grouped into subdirectories by project name. Note that SDFITS
files are only produced for the Spectrometer, Spectral Processor, and Zpectrometer. No SDFITS files
are produced automatically for the DCR..

To view data being filled into the online directory, simply issue the command online. The project name
and location of the online data file do not need to be specified. This command also sets GBTIDL into
online mode so subsequent GBTIDL commands automatically detect new data as they are filled. There
is no need to create SDFITS and index files manually, nor any need to issue special commands to pick
up the latest scans. For example:

GBTIDL -> online ; Connects to most recent project’s online SDFITS file

Connecting to file: /home/sdfits/project/project.raw.acs.fits
File has not been updated in 2.35 minutes.

GBTIDL -> getfs, 10 ; get some recent data, while scan 11 is integrating
GBTIDL -> getfs, 11 ; when scan 11 is finished, its data are available with
; no additional filein command necessary

If problems are encountered with the online system, contact the on-duty telescope operator.

Note that all data in /home/sdfits is read only except for the flag files, which need to be writable so
that GBTIDL users can flag and unflag the online data.

GBTIDL will remain in online mode until an offline data set is specified for input using the offline,
filein or dirin command.

4.2 Accessing SDFITS Data After an Observing Run

Data created by the online SDFITS filler will remain in the /home/sdfits directory for approximately 3
months before it is automatically deleted. You may wish to preserve your SDFITS files by copying them
from /home/sdfits/project to your own account (where ”project” here is the name of the project that
you wish to preserve).

To connect to data in the /home/sdfits directory after the project has finished observing, you can
either use the filein command (described in section 4.3) or the offline command:

GBTIDL -> offline, ’AGBT06C_028_05’

4.3 Creating SDFITS Files

After about 3 months time, the SDFITS data in /home/sdfits are deleted and the “unfilled” data in
/home/gbtdata are moved to /home/archive. You will need to create new SDFITS files in your account
if you haven’t copied the originals or if the default filling method is not what you want. If you are storing
large data files in Green Bank it is preferred that you use scratch space, such as the /home/scratch
area. This area is meant for temporary storage of large data files.

To create SDFITS files from data in /home/gbtdata or /home/archive, use the sdfits program, which
runs from the unix prompt, only in Green Bank. Help is available for the sdfits program as follows:

% sdfits -help

In addition to the online help, the sdfits program has full documentation/ at
http://safe.nrao.edu/wiki/bin/view/GB/Data/Sdfits including development status, known issues, re-
quest list, and usage examples.

The sdfits program offers three levels of calibration, identified by the -mode switch as “raw” (default),
“cal”, or “avg”. Users of GBTIDL will generally want to use the default of no calibration (-mode=raw)
and use GBTIDL routines to do the calibration, instead. With -mode=raw, the SDFITS file will contain
one row of data for each data phase. That is, sig_calon, sig_caloff, ref_calon, and ref_caloff phases are all
stored individually in the SDFITS file. The other modes (cal and avg) are not recommended since they
use un-maintained, older calibration code. In the future these will use the same calibration code used
by GBTIDL.

The sdfits program writes data into the current directory by default, so it is best to change into a
directory in which you can write large files before running sdfits. In Green Bank, you have a quota on
your home directory so it is best not to fill large datasets into your home area.

Typical use looks like this:

% cd /home/scratch/[username]
% sdfits -scans=1:100 /home/gbtdata/AGBTO1A_001_01

The resulting SDFITS file, assuming it contains spectrometer (ACS) scans, is called AGBT01A_001_01.raw.acs.fits.
If the specified scan range also includes data from the DCR or Spectral Processor, then a separate output
file will be created for each backend.

http://safe.nrao.edu/wiki/bin/view/GB/Data/Sdfits

4.4 Accessing SDFITS Files

The filein command is used to identify an SDFITS file as the source of input. The name of the SDFITS
file can be supplied as a parameter. If the file is in the directory from which GBTIDL was started, the
full path is not required. For example:

GBTIDL -> filein,’mydata.fits’

However, if GBTIDL was not started in the directory in which the file is stored, you must include the
path. For example,

GBTIDL -> filein,’/users/aeinstein/mydata.fits’

If you omit the filename and simply type filein, you can select the input file using the file selection
GUL

GBTIDL associates an index file with each SDFITS file. If the file mydata.fits does not already have
an up-to-date index file, it will be created when the filein procedure is run. The index file, in this case,
would be called mydata.index and would reside in the same directory as the SDFITS file. The index file
is simply an ASCII listing containing information about each row in the SDFITS file. It is used in the
GBTIDL I/O system to speed data retrieval and enable searching the data.

4.5 Accessing Multiple SDFITS Files Simultaneously

Accessing Multiple SDFITS Files Simultaneously It is easy to work with data from multiple SDFITS
files at the same time in GBTIDL, provided the data are stored in a single directory. Rather than using
filein, simply use |dirin to identify the directory and all the SDFITS data in that directory will be
available to the Data I/O commands. A single index file (called “dir.index”) is created and there will be
a unique index for each row of data throughout the directory. The dirin command takes one parameter,
the name of the directory:

dirin,’/users/aeinstein’

You can also simply type dirin and select the desired directory from the file selection GUI. Since scan
numbers may repeat from one observing session to another (even within the same project) it often is
simpler to work with one SDFITS file at a time. However, GBTIDL does provide ways to work with
multiple occurances of the same scan number. For example, data access and calibration commands such
as getfs have a parameter called instance that allows you to select which instance of a given scan number
to acquire.

4.6 Summary of the Location of Data

1. Recent raw data can be found in /home/gbtdata.

e These files need to be converted to SDFITS before they can be used in GBTIDL.

e After approximately 3 months, these files are moved to /home/archive.
2. Data are archived in /home/archive for long term storage.
e These files need to be converted to SDFITS before they can be used in GBTIDL.

3. While observing, SDFITS files are produced automatically in /home/sdfits/project.

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/guide/dirin.html

e The online and offline commands in GBTIDL know about and can use these files.

e Files in /home/sdfits are removed as needed to make room for newer data. Sdfits files will
remain available for at least 3 months and often longer. They are not archived since they can
be recreated from the data in /home/gbtdata or /home/archive.

e The data in /home/sdfits/project was filled using defaults that may not be right for you.
You may want to create SDFITS files using your own choice of sdfits settings.

e "project” in /home/sdfits/project is the name of the project being observed (e.g. AGBT01A_001_01).
4. SDFITS files in user accounts are for longer term storage.

e The sdfits program creates SDFITS files in your personal acoount.

e The filein and dirin commands in GBTIDL work on files in your account.

/home/gbtdata

AT

Automatically filled After 3 months

Use SDFITS program to fill

Ihome/sdfits fhomelarchive
After 3 months Copy to Use SDFITS program to fill
/ \ | /
Trash bin lusers/[username]

4.7 Listing the Contents of Data Files

After a file is loaded into GBTIDL using one of the methods described above, there are several ways to
summarize the contents of that file.

e summary: This procedure gives a summary of the scans in an input data file. You can either
print the summary to the screen or to a file. For example, to print to the screen, the command
and its result would be:

GBTIDL -> summary

Scan Source Vel Proc Seq RestF nIF nInt nFd Az El
79 W30H -44.0 Track O 1.667 2 6 1 379.2 16.1
80 W30H -44.0 Track O 1.667 2 6 1 379.4 16.2
81 W30H -44.0 Track O 1.667 2 6 1 379.5 16.3
82 W30H -44.0 Track O 1.667 2 6 1 379.6 16.4
83 W30H -44.0 Track O 1.667 2 6 1 379.8 16.4

If you wish to save the summary to a file, use:
GBTIDL -> summary, ’myfile.summary’

e list: The records in the input data set can be summarized with the list command. You can choose
to list all of the records or only a subset of them using optional parameters. To display a range of
records, two optional parameters are needed, a beginning and ending record number. For example,
the following will list the first 11 records in the input data set:

GBTIDL -> 1list,0,10

#INDEX SOURCE SCAN PROCEDURE POL IFNUM FDNUM INT SIG CAL
0 W3 (0H) 5 Track XX 0 0 0 F T
1 W3 (0H) 5 Track XX 0 0 0 T T
2 W3 (0H) 5 Track XX 0 0 0O F F
3 W3 (0H) 5 Track XX 0 0 0 T F
4 W3 (0H) 5 Track XX 0 0 1 F T
5 W3 (0H) 5 Track XX 0 0 1 T T
6 W3 (0H) 5 Track XX 0 0 1 F F
7 W3 (0H) 5 Track XX 0 0 1 T F
8 W3 (0H) 5 Track XX 0 0 2 F T
9 W3 (0H) 5 Track XX 0 0 2 T T

10 W3 (0H) 5 Track XX 0 0 2 F F

For more details, type: usage, ’list’, /verbose

e files: The files command prints to the terminal screen the file names being used for 1/O. For
example, if you have loaded both continuum and spectral line data and issue the files command:

filein, ’/home/line.fits’

cont
filein, ’/home/continuum.fits’
files, /full ; print full path names

spectral line in : /home/line.fits
spectral line out : /home/GBTIDL_KEEP.fits

continuum in : /home/continuum.fits

Note that GBTIDL_KEEP:fits is the default output file and it is opened automatically on startup.

5 Data Containers

5.1 Overview

To make effective use of GBTIDL, you must have an understanding of data containers and how they are
used by GBTIDL procedures. The following sections give an introduction to data containers. Advanced
users may wish to refer to the “Data Containers for Expert IDL Users” section in the Appendix.

A data container (DC) is an IDL data structure used by GBTIDL to store a spectrum and its
associated header. A data container uses standard data types (e.g. integers, floats and strings) for
header values and an IDL pointer for the data itself. There are 16 global data containers, or buffers,
numbered 0 through 15 that are used like memory entries in a calculator. Buffer 0 contains the primary
data container (PDC). The PDC will be discussed in more detail in a later section.

GBTIDL includes a number of calibration, averaging, and analysis procedures that work with the
PDC by default. You may see some of these routines refered to as part of the “GUIDE layer” elsewhere
in the documentation.

In addition to the global buffers, it is possible to define IDL variables as data containers. GBTIDL
includes commands and procedures that operate on these as well, and you may see some of these routines
refered to as part of the GBTIDL “toolbox.”

The IDL global structure !g is central to the GBTIDL implementation. It contains not only the global
data containers, but also a set of values which assist in data reduction. For example, the field !g.nfit
stores the order of the polynomial for the baseline to be fit, so that value does not have to be specified
each time the baseline procedure is run. The gstatus|procedure summarizes the current contents of the
Ig structure. Many users will never need to interact directly with the !'g structure. Appendix A lists
all of the items in the !g structure.

A second global structure called !gc is used to store various constants . This structure is read-only. It’s
contents are listed in the following table.

Name Type Value Description

lgc.light_speed double 2.99792458D8 The speed of light in m s~ T

lgc.light_c double 2.99792458D5 The speed of light in km s™*

lgc.plank_h double 6.6260755D-27 Planck constant in g cm? s™*

lgc.newt_g double 6.67259D-8 Newton gravitational constant in dyne cm? gm™?
lge.boltz_k double 1.380658D-16 Boltzman constant in erg K=!
lgc.eV2erg double 1.60217733D-12 1 eV to ergs

lgc.AU double 1.4960D+13 AU in cm

lgc.m_H double 1.673534D-24 Hydrogen mass in gm

lgc.m_e double 9.1093897D-28 Electron mass in gm

lge.pe double 3.0857D+18 1 parsec in cm

lgc.rad_sig double 5.67051D-5 Radiation constant in erg cm™2 s™! K=4

For example, if you wish to use the Planck equation, AE=hv, for a frequency of 1665 MHz, the following
would calculate the energy:

GBTIDL -> print, !gc.plank_h * 1665d6 ; Print the product h * 1665 MHz to the screen
1.1032416e-17 ; The result

5.2 Data Containers and Pointers

A data container is an IDL data structure that uses standard data types for header information, but
uses a pointer for the data array. The reason for using a pointer is that it allows the data container to
hold a spectrum with an arbitrary number of channels. The continuum data container uses additional
pointers to hold auxilliary information stored in arrays that must match the dimensionality of the data
array (e.g. the time at the center of each integration and the pointing direction).

Pointers make the data container very flexible. Unfortunately, they also make it somewhat more difficult
to use the data directly. GBTIDL procedures hide all of the nuances of working with pointers, so nearly
all users will not need to be concerned with how to work with pointers in IDL. It is possible to copy
the data in a data container to a standard IDL array, and back again into the data container using the
GBTIDL function getdata and the command setdata. An example follows later in this section. Users
who wish to learn more about advanced manipulation of data containers should see the ‘Data Containers
for Expert IDL Users’ section in the Appendix.

5.3 About the Primary Data Container

The PDC is the data container that is used by default by many GBTIDL procedures to improve ease
of use. So a display operation such as show will display the PDC unless told to do otherwise, and
likewise for smoothing operations, statistics, and so on. Data access procedures copy the data from disk

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/guide/gstatus.html

into the PDC, unless told otherwise. Like all data containers, the PDC includes both the data and the

associated header information. The PDC is stored in the IDL global variable !g.s[0] if it is a spectrum,

and !'g.c[0] if it is continuum data. In addition to the PDC, there are 15 global data containers that

can be used for storage of results during data reduction sessions. These are called !'g.s[1], !g.s[2],
.and !g.c[1], !g.c[2], ...

5.4 Examining and Changing Data Containers

You may on occassion need to change the contents of a data container. For example, you may need to
set the rest frequency by hand. The change can be made using the following command:

lg.s[0].line_rest_frequency=1667.359d6 ; Change to 1667.359 MHz

Another example involves setting the y-axis label on the plotter. For more information about changing
axis labels, see Appendix H.

lg.s[0] .units="F(Jy)’ ; Set the label to ’F(Jy)’

To access the array containing the actual data values in a data container, use the commands |getdata
and setdata/ . For example:

GBTIDL -> getrec, O ; get some data

GBTIDL -> mydata = getdata() ; copy the data array into an IDL variable
GBTIDL -> help,mydata

MYDATA FLOAT = Array[8192]

GBTIDL -> mydata[0:500] = O ; make some changes to the IDL array
GBTIDL -> setdata,mydata ; insert the new array into the PDC

5.5 Data Container Operations

GBTIDL can be used as a calculator, operating on spectra contained in the 16 global data containers.
Procedures are available to perform arithmetic operations on the global data containers, including add,
subtract, multiply, and divide. These procedures take two required parameters: the indices of the
buffers being operated on. They also take an optional third parameter, which identifies the buffer into
which the result will be stored. If a storage buffer is not specified, the result is placed in the PDC (buffer
0), overwriting any existing spectrum there. A copy command copies the contents of one buffer directly
into another. For example, to add two data containers, you could use the following command sequence:

getrec,1 ; Get some data

copy,0,10 ; Copy the PDC to DC 10

getrec,0 ; Get some other data

copy,0,11 ; Copy the PDC to DC 11

add,10,11,12 ; Put the sum of the two spectra in DC 12
show,12 ; Show the sum

These operations can be useful for handling baseline subtraction. For example, you can store a
baseline fit in a data container and subtract that fit from any other spectrum, as in the following
example:

getrec, 0 ; get spectrum A and place it into the PDC (buffer 0)
nfit, 5 ; set the order for the polynomial in a baseline fit
bshape, modelbuffer = 10 ; fit a baseline and store it in buffer 10

getrec, 1 ; get spectrum B

copy, 0, 5 ; copy spectrum B into buffer 10

subtract, 5, 10, 11 ; subtract the spectrum A baseline from spectrum B

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/guide/getdata.html
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/guide/setdata.html

10

6 Data Retrieval and Calibration

6.1 Calibrating Data

If the sdfits program was run with -mode=raw as recommended, the data in the SDFITS file are
uncalibrated. The observer can calibrate the data in GBTIDL. If the data were taken in one of the
GBT standard observing modes supported by GBTIDL, then there is a GBTIDL command that can be
used to retrieve and calibrate the data. GBT calibration can be complex. These procedures typically
give results accurate to 10% - 20%. If you require higher precision, refer to the document Calibration of
Spectral Line Data in GBTIDL.

For spectral line data, the following calibration procedures are available:

Frequency Switched : getfs
Total Power Position Switched : getps or getsigref
Total Power Nod : getnod
Beam Switched : getbs

Refer to the User Reference or use the usage command in GBTIDL for details on using these commands.
For example, to get information about getfs, use:

usage, ’getfs’, /verbose

Each of the calibration procedures except getsigref takes one required parameter: the M&C scan
number. In the case of getfs, the calibration and retrieval pertains to a single scan. For getps and
getnod, the data comes in scan pairs and the scan parameter can be either scan in the observing
procedure. For example, if an OffOn observation comprises scans 9 and 10, then the following commands
give the same result:

getps,9
and
getps, 10
The procedure getsigref takes two required parameters: the scan used for the “signal” and the scan
used for the “reference”. So getsigref offers some flexibility to use mismatched sig/ref pairs or data
from non-standard procedures.

getsigref, 14, 21 ; Get and calibrate data with signal scan 14 and reference scan 21

Each of the calibration procedures takes optional parameters. A few of the data selection keywords are
listed below:

Keywords related to data selection:

Keyword Description Default Value

ifnum spectral window index 0

intnum integration number all integrations averaged
plnum polarization index; 0O=LL or XX, 1 =RR or YY 0

fdnum feed number 0

sampler sampler name; alternative to ifnum,plnum,fdnum unused unless given explicitly

So, for example, to retrieve the polarization LL data from the second IF, third integration in scans 12-13,
which make up a total power NOD observation, one could use:

11

getnod, 12, ifnum=1, plnum=0, intnum=2

Unlike some data processing packages, GBTIDL does not automatically average the two polarizations
associated with a scan. So, you must be sure to average polarizations by hand where appropriate.

Keywords to control details of the calibration:

Keyword Description Default Value

smthoff smooth the off spectrum by smthoff channels no reference smoothing
tsys system temperature Tsys derived from the data
tcal cal temperature taken from the data header
eqweight apply equal weighting to integrations when averaging 0 (false) - weight by Tsys
tau zenith opacity get_tau(freq)

ap-eff aperture efficiency get_ap_eff(freq)

units units of "Ta’, *Ta*’, or "Jy’ 'Ta’

Other keywords

Keyword Description Default Value

quiet suppress messages printed to the screen False (0)

keepints save the individual integration results to the keep file False (0)

useflag use all or some of the flag rules by id string (see flagging) use all flag rules
skipflag skip all or some of the flag rules by id string (see flagging) do not skip any rules
instance for multiple occurances of the same scan, choose this instance 0 (the first instance)
file for multiple occurances of the same scan, find it in this file (relevant with dirin only) first file

timestamp for multiple occurances of the same scan, find the one with this timestamp

6.2 Retrieving Individual Records

For most users, the data retrieval and calibration procedures discussed in the previous section will be
sufficient. Others may need to access data in its raw, uncalibrated form. There are two commands
for accessing uncalibrated data, get and getrec. The getrec command is also useful for retrieving
calibrated data from a keep file (a file which contains data already calibrated in GBTIDL and stored
using the keep command).

get: The get procedure can be used to retrieve individual data records from the input data file based
on the scan number, feed, IF, integration, polarization, cal state, and sig/ref state of the data. If these
parameters are not sufficient to uniquely identify a single row in the SDFITS file, only the first matching
row is returned and a warning message is printed. The get procedure might be used as follows to
calculate a system temperature from an uncalibrated data file:

get, scan=10, pol="LL’, ifnum=1, fdnum=1, int=1, sig="T’, cal=’T’
calon = getdata()

get, scan=10, pol="LL’, ifnum=1, fdnum=1, int=1, sig="T’, cal=’F’
caloff = getdata()

tcal = !g.s[0] .mean_tcal

tsys = caloff/(calon-caloff)x*tcal

print,’Mean Tsys = ’,mean(tsys)

A complete list of parameters for the get procedure is given below:

12

Parameter Description

index record number

project project ID

file SDFITS file names (only relevant if the input data set is specified with dirin rather than filein)
timestamp scan timestamp as YYYY_MM_DD_HH:MM_SS
extension SDFITS extension number

row SDFITS row number

source source name

procedure procedure name

procseqn procedure sequence number

scan M&C scan number

polarization polarization, e.g. ‘LL’, ‘RR’, ‘XX’ or ‘YY’
plnum polarization index, zero-based

ifnum IF (i.e. spectral window) index number, zero-based
feed feed name (e.g. B1)

fdnum feed index number, zero-based

int Integration number

numchn number of channels in the spectrum

sig “T” or ‘F’ to identify SIG state

cal “T” or ‘F’ to identify cal-on or cal-off

sampler backend sampler name

azimuth antenna azimuth

elevation antenna elevation

longitude longitude-like axis, e.g. RA

latitude latitude-like axis, e.g. DEC

Ist LST

centfreq center frequency in Hz

restfreq rest frequency in Hz

velocity source velocity in km/s

freqres frequency resolution in Hz

freqint frequency interval (channel spacing) in Hz
dateobs date-time value

bandwidth bandwidth in Hz

exposure exposure time

tsys system temperature

nsave nsave index

trgtlat latitude coordinate of source

trgtlon longitude coordinate of source

obsid observation ID

subref subreflector state (subref_state); 0O=moving, 1=first position, -1=second position

getrec: To retrieve an individual record, use the getrec procedure. This procedure takes one parameter,
the record number. The record number is equivalent to the row number in the SDFITS file. Like all
indices in IDL, the record number is a zero-based index. So, for example, the fifth record can be retrieved
and displayed as follows:

getrec,4

6.3 Getting Scan Header Information

After data have been loaded into the PDC using one of the GBTIDL calibration procedures, get, or
getrec, the header command can be used to show header information for that scan. For example:

GBTIDL -> header

Proj:

Scan:
Int

Pol :
IF
Feed:

TREG_050627 Src : W30H
79 RADec : 02 27 04.1 +61 52 22
0 Egnx : 2000.0
YY v : -44.0 OPTI-LSR
0 AzE1l : 379.232 16.105
1 Gal : 133.948 1.064

Obs

Fsky:
Frst:

BW

delF:
Exp :

: Jim Braatz

1.667696 GHz

1.667359 GHz
50.000 MHz

3.052 kHz
26.2 s

13

Proc: Track UT : +04 10 20.0 2005-06-28 Tcal: 1.45 K
Sub : 0 LST/HA: +17 16 29.4 -9.18 Tsys: 28.38 K

The header command shows information for the PDC by default, but headers for other data containers
can be displayed by specifying the desired buffer index, or by specifying the IDL variable name explicitly.
The following two commands are equivalent, and show the header for the data stored in buffer 2.

GBTIDL -> header, 2
GBTIDL -> header, !g.s[2]

7 The Plotter

7.1 GUI Features

When GBTIDL is first started it does not show the plotter screen, but the first time a command is
issued that uses the plotter, it will appear. The figure below identifies the parts of the plotter GUI. You
can manipulate the view using either command line procedures or the buttons on the plotter screen.
Control buttons are positioned along the top menu bar, and status indicators are along the bottom.

14

ZHe) shes fuaung
jey; uopng doy

ay) Yy pabueyo
2{ UED JSUUN ENE-X

pajeaia sem jojd awn pue aje(]

(N0 0 LU, 3| S PUE LW
snoue s fq pajelaual s voneo ULy

uoneasesqo go abue noy
PUE “UDIEABS “YINWIZY

adA] uone uesqQo pue
‘aime saduia) UoNEIgHED
“ameadws) wasi

3|y BlEp jO ALEU puE
“1aquinu Aauasnbaly siEpaulEiu
‘uonezuejod ueds

maln ay) aiepdn

0] pesn &q o] paau
[PUBLLILLDD MOLS,
auy ‘yoJ “panssi

siprewwos Moy S oBuEwd

e awn s sjepdn |wa W
: LD OZLN, Y07

1anogd 8yl ‘uo s s i

[2AD] WooT

J1 "jo Jo uo 51 aEpdn b
OINE JSLja UM SEDIpU | e H
A SEGERA BN § AN EXT CLECEE

BLUEU B2INDS

IpIMPU B PLUE
‘fauanbayy Ay

fouanbay say

SieqE|

SIXE JUSLIND 81 5B

EJIUN SlLES U} SEY
Siy|] MOsInd asnow
nof Jo SeEWpI0eD
A pue ¥ juaiun?

doj e suopng
yum paBueys
.ir!f 8 ued ‘uondo
YO Y2 Juauns

=k TEYETT CORNERE R Dl R

w1 puaddy

21 Ul DY4 1aIIES
88 ‘s abueyo

0] MOy We3|

0] spun see-A

LONE AIBE G0
#0309 pue'yy

lanesqQ

SEP UDITE MEEY ()

18qUWINU UBDS

S1Ul} [Baua3pIs [B20|
pue “slwn uonebayu
‘AUz0j@ A aunog

15

Buttons for manipulating the plotter view and their equivalent commands:

e File: The file menu is used to print the plot or to write the data to an ASCII file. The available
options are:

Print...: Print the screen (this allows you to choose your printer and print options)
Write PS: Save the plot to a postscript file

Write ASCII: Write the data to an ASCII file

Exit: Exit the plotter

e Options: The Options menu includes the following capabilities:

Crosshair: Toggles the cursor between a crosshair style and a pointer style. The crosshair
is useful for reading x and y values off the plot.

Zeroline: Toggles a horizontal line at y=0 on the plot.
Toggle Histogram: Switches between histogram-style and connected-points style plots.

Toggle Region Boxes: Affects region boxes that were created using the setregion com-
mand.

Clear Marks: Clears all the markers you have made on the plotter.
Clear Vertical Lines: Clears lines you have added to the plotter.
Clear Overlays: Clears spectra overlaid on the original.

Toggle Overlays: Toggles the display of any overlays without affecting the scaling of the
axes.

Clear Annotations: Clears all textual annotations on the plotter, including the results of
Gaussian fits shown on the plot.

Set Voffset=Vsource: Sets the offset velocity equal to the source velocity obtained from
the header.

Set Voffset=0: Sets the offset velocity to zero.

Set Voffset: Prompts the users for a new offset velocity.

e LeftClick: This menu lets you choose the behavior of the left mouse button. The options are:

Null: A left click does nothing.
Position: A left click will print the x and y coordinates of the cursor on the terminal screen.

Marker: A left click places a marker on the plot and displays the x and y coordinates of
that marker.

Vline: A left click places a vertical line on the plot and displays the x and y coordinates of
the click point.

e X-axis units: This button can be used to specify the desired x-axis units. The button’s label is
the current x-axis units. The options are:

Channels, Hz, kHz, MHz, GHz, m/s, or km/s

e Reference Frame: This button provides options for changing the velocity frame of reference.
The button’s label is the current velocity frame of reference. You can choose:

TOPO: Topocentric - the observed (sky) frame
LSR: Local standard of rest (kinematic)

LSD: Local standard of rest (dynamic)

GEO: Geocentric

16

— HEL: Heliocentric
— BAR: Barycentric
— GAL: Galactocentric

e Velocity Definition: This button can be used to set the velocity definition. The button’s label
is the current velocity definition. Options are:

— Radio, Optical, or True (Relativistic)

e Abs: This button allows you to choose whether to display the x axis in absolute units or relative
to the center of the band.

e Unzoom: This button unzooms the plotter one step at a time. That is, if you have zoomed the
plot three times successively, clicking this button once will return you to the zoom parameters
applied after the second zoom. Clicking it twice more will return you to the full unzoomed scale.
This button is grayed out when fully unzoomed. For more information on zooming methods, see
the section on zooming below.

e Auto Update: This setting controls whether or not the plotter automatically responds to com-
mands. The feature is described in the next section.

e Print: The print button sends the plot, as displayed in the plotter, immediately to the default
printer as set in the !g.printer variable. If you want to specify a printer, use the print option under
the File button.

7.2 Auto Update (Freeze/Unfreeze)

The Auto Update feature determines how the plotter responds to data processing commands. With
Auto Update on, a command that changes the PDC will trigger the plotter to update with the new
result. With Auto Update off, the plotter is only updated in response to a show command. In most
cases, you will want the auto update turned on (unfreeze) so the show command is not required at
each step. However, setting it off can be useful for faster processing of data in scripts because plotting
the spectra during intermediate steps can be time consuming. From the command line, use freeze or
unfreeze to turn the auto-update off or on, respectively.

For example:

unfreeze ; Turn on auto updates
getrec,1 ; Get some data - note the plot updates
hanning ; The plot updates after the smooth operation
freeze ; Turn off auto-updates
for i=101,200 do begin & $; This loop will be faster
getrec,i & $; since the plots are not updating
accum & $
end
ave
show ; Now the plot updates
unfreeze ; back to the usual setting

7.3 Zooming

Zooming in on a plot can be accomplished in several ways. One is to use the middle mouse button on
the plotter, clicking twice to specify the corners of the new zoom box. To unzoom, click the Unzoom
button at the top of the plotter, or simply type unzoom. The Unzoom button takes you back to the
previous zoom settings, so several clicks may be necessary to return to the full scale. However, typing

17

unzoom in the terminal window will bring you back to the original unzoomed spectra, no matter how
many times you zoomed. If you wish to cancel a zoom after the first middle mouse click, click the right
mouse button.

Zooming may also be accomplished with the setxy procedure. When used with no parameters, this
procedure places a stretchable box on the plot and allows it to be positioned before executing the zoom.
Instructions for its use are printed to the screen when the procedure is invoked. Alternatively, you can
specify the desired zoom range from the command line using: setxy, x1, x2, yi, y2.

A third zooming method is to specify minimum and maximum x- or y-axis values using the commands
setx or sety. You can then either specify the minimum and maximum x- or y-range using parameters,
or omit the parameters and use the cursor to set the range. The commands freex and freey can be
used to autoscale the x- or y-axis without unzooming the other axis. For example, freey will show the
full y-range of the data without changing the current x-range.

7.4 Printing Spectra and Creating Postscript Plots

Generating postscript plots can be difficult in IDL. In GBTIDL, we have simplified the process with the
write_ps procedure. This procedure will generate a postscript file that reproduces the plot as shown on
the plotter. The postscript rendition will include overlays, show the zero line if it is turned on, show any
annotations created with the annotate procedure, display any markers or vlines placed on the plot, and
the axis ranges are accurately reproduced. However, the write_ps procedure cannot know about any
other IDL primitives that may have been used to draw on the GBTIDL plotter, so any IDL primitive
plot commands will not be reproduced.

7.5 Generating ASCII Data

The command write_ascii can be used to write data to an ASCII file. The command takes a single
parameter, the name of the ASCII file to be generated.

The table command is useful for printing the x and y coordinates of a few specific points to the terminal
screen. For example, the following example will list the data values for points between x = 1.66 GHz
and x = 1.67 GHz for the PDC:

GBTIDL -> table, brange=1.66, erange=1.67

Scan: 79 W30H 2005-06-28 +04 10 20.0
Ta
GHz-LSR YY
1.6699992 -0.14701117
1.6699962 -0.10967928
1.6699931 -0.13311513
1.669990 -0.10884448
1.6600114 -0.013062999
1.6600084 0.023651161
1.6600053 0.011518455
1.6600022 -0.013523553

7.6 Annotating the Display

You can place text on the plot using the annotate procedure. This command takes three parameters:
the x and y coordinates, and the text. You can also choose to include a color specifier and font size, as
well as specify normalized coordinates (/normal). Example:

18

annotate, 6, 9, ’'This is an annotation’, color=!orange, charsize=2.0

7.7 Other Plotter Procedures

The following table lists some of the command line procedures relevant to the plotter. Full descriptions
of these procedures are available in the GBTIDL User Reference or via the usage command.

Procedure Action
show Displays the spectrum
oshow Display a spectrum as an overlay
gbtoplot Used to plot arbitrary (x,y) values on the GBTIDL plotter.
chan, freq, velo, setxunit Sets the X-axis units
setx, sety, setxy Sets the X- and/or Y-axis scale
unzoom Retrieve previous zoom settings
freex, freey Auto scale one axis without affecting the range of the other.
freexy Auto scale both axes
histogram Toggle between histogram-style and connected-points
annotate Place some text on the plot
crosshair Toggle the crosshair cursor on/off
write_ascii Write the data to an ASCII file
write_ps Write the plot to a postscript file
zline Toggle the zero-line on/off
bdrop, edrop Hide channels at beginning/end of the spectrum
showregion Turn on or off the display of baseline region boxes
click Prompt user to click on the plot, and return info on
the click location
clearannotations, clearvlines, clearoplots, Clear various types of overlays
clearoshows, clearovers, clearmarks, toggleovers
clear Clear everything from the plotter
setabsrel, setframe, setveldef, setvoffset Set the velocity definition and rest frame, and offsets
setmarker, vline Place markers and lines on the plot
chantox, xtochan Convert between X-axis units and channel number
freeze, unfreeze Turn Auto Update off or on
reshow Re-draw everything known to the plotter
7.8 Colors

GBTIDL has built-in color definitions in global variables called !black, !red, lorange, !green, !forest,
lyellow, !cyan, !blue, !magenta, !purple, !gray, and !white. Many of the plotter commands take a color
as an optional parameter. For example, the color of the spectral line can be changed like this:

show, color=!blue

8 Data Analysis

8.1 Using the Stack

The stack is a list of indices that can be used to gather scan numbers or record numbers to be used in a
later operation, such as averaging. The stack system is modeled closely after the UNIPOPS commands.

To add entries to the stack, use the addstack command or the appendstack command. The addstack
command adds a sequence of entries using parameters that describe the first entry, last entry, and
increment. The appendstack command appends an array of indices to the stack. For example:

19

emptystack ; clears the contents of the stack

addstack, 15 ; Add only index 15

addstack, 18, 21 ; Add indices 18 through 21

addstack, 22, 26, 2 ; Add indices 22 through 26 with an increment of 2. (22, 24, 26)

appendstack, [29, 35] ; Adds indices 29 and 35 to the stack

The tellstack command lists the indices currently contained in the stack. The GBTIDL global variable
lg.acount contains the total number of entries in the stack. The power of the stack will become more
evident in the discussion on averaging data. For now, here is a simple example of using the stack to
show spectrum headers for scans 6, 8, 10 and 12:

emptystack
addstack, 6, 12, 2
for i=0,!g.acount-1 do getnod, astack(i) & header & end

The following procedure gives an example of one way the stack could be put to use. The procedure
averages Nod data identified by scan numbers listed in the stack. To use a procedure like this one, first
populate the stack with the appropriate scan numbers then call the procedure.

pro myavg,_extra=extra

freeze

for i=0,!g.acount-1 do begin
getnod,astack(i) ,plnum=0,units=’Jy’,_extra=extra
accum
getnod,astack(i) ,plnum=1,units=’Jy’,_extra=extra
accum

endfor

ave

unfreeze

show

end

The following stack commands are available.

Command Purpose

addstack Adds a sequential list of indices to the stack, using addstack,begin,end,increment syntax
appendstack Adds a single index or array of indices to the stack

astack() Returns the value of a specific stack entry, given an index,

avgstack Averages the records associated with the stack entries

delete Removes a stack entry from the list

deselect Removes indices from stack based on criteria such as source, polarization, and integration number.
emptystack Clears the stack

liststack Runs a list on records identified by the stack.

select Adds indices to stack based on criteria such as source, polarization, and integration number.
tellstack Shows the indices in the stack

or returns all of the stack entries if no index is specified

8.2 Removing Baselines

GBTIDL uses “general orthogonal polynomials” in a least squares fit to determine baseline models.
Currently GBTIDL does not support sinusoid or Fourier component models, but these may be added
for a later release.

To remove a spectral baseline, you must first identify a line-free region of the spectrum to be fit. The
region can be specified with either the nregion command, which allows you to specify the range by

20

typing the beginning and ending channels for each range, or with the setregion command, which allows
you to select the baseline region on the plotter, using the mouse cursor.

You can specify the order of the polynomial with the nfit procedure, or provide it as a parameter in the
baseline fitting routines. In either case, the value is stored and becomes the default for later baseline fits.
You can view the baseline without subtracting it via the bshape procedure. When the baseline appears
satisfactory, the baseline procedure can be used to subtract it. A typical baseline fitting session might
then look like this:

nfit, 5 ; Specifies that a 5th order polynomial baseline will be fit
setregion ; Specify baseline regions using the mouse

bshape ; View the fitted baseline, but don’t subtract it yet

nfit, 4 ; Specifies that a 4th order polynomial baseline will be used
bshape ; View the new baseline fit, but don’t subtract it

baseline ; Subtract the most recent baseline fit

When a baseline is fit with either bshape or baseline, the baseline model itself can be stored in a global
data container by setting the modelbuffer keyword. You can view the baseline model separate from the
data as follows:

baseline, modelbuffer=5 ; Subtract the baseline and store the model in buffer # 5
show, 5 ; Show the baseline model in buffer # 5

and the data could be restored to its original form by:

add, 5, 0O ; Add baseline back to original spectrum to undo subtraction

After a baseline region is specified using the setregion procedure, a box is displayed indicating the
region to be used in a baseline fit. The height of the box is twice the RMS of the data within the box,
centered at the mean of the data within the box. These boxes can be removed using the showregion,
/off command (the regions remain set, but are not displayed).

If you wish to subtract from spectrum B a baseline model derived from spectrum A, use this method:

getfs, 1 ; Get spectrum A

baseline, modelbuffer=5 ; Fit and subract the baseline
getfs, 2 ; Get spectrum B

subtract, 0, 5 ; Subtract the old model

Here is a more sophisticated example of using various baseline features and commands.

getnod, 32 ; Get some data

setregion ; Set a region to be fit

bshape, nfit=10 ; Fit a 10th order polynomial

bmodel, nfit=2, modelbuffer=5 ; Use 2 coefficients to generate a new model
bmodel, nfit=5, modelbuffer=6 ; Use 5 coefficients

bmodel, nfit=10, modelbuffer=7 ; Use all 10

oshow,5, color=!yellow

oshow,6, color=!cyan

oshow,7, color=!green ; Plot all three for comparison
subtract, 0, 6 ; Subtract the 5th order fit

21

8.3 Averaging Data

GBTIDL uses an accumulator to average data. For example:

sclear ; Clears the default global accumulator

get, index=1 ; Get record # 1

accum ; Put the data in the accumulator

get, index=2 ; Get record # 2

accum ; Adds the data to the accumulator

ave ; Averages data in the accumulator and places result in PDC

The sclear command clears the accum buffer to ensure it starts empty. The result of the average is then
stored in the PDC unless otherwise stated.

The above example uses the default accumulator buffer. There are 4 accumulator buffers numbered 0,
1, 2, and 3 so you can perform up to 4 different averages simultaneously. These are useful, for example,
when accumulating data from two polarizations simultaneously, as shown in the following script:

sclear, 1 ; Clear the 1st accum buffer
sclear, 2 ; Clear the 2nd accum buffer
for i=10,15 do begin

getfs, i, plnum=0

accum, 1 ; Put data in 1st buffer
getfs, i, plnum=1

accum, 2 ; Put data in 2nd buffer
end

ave, 1 ; Average data in 1st buffer
copy, 0, 10

ave, 2 ; Average data in 2nd buffer
copy, 0, 11

show, 10

oshow, 11

Note that the IDL code in the above example works only if it is stored as a script, not interactively,
because the for loop is split over several lines without the IDL line continuation characters & and $.

When the ave command is issued, the contents of the accum buffer are cleared unless the noclear
keyword is set. So, if you wish to view intermediate results in an ongoing average, you must specify that
the buffer should not be cleared:

sclear

get, index=1

accum

get, index=2

accum

ave, /noclear ; The accum buffer is NOT cleared here
get, index=3

accum

ave ; The accum buffer IS cleared here

It is also possible to use the stack when averaging data by using the avgstack command. In the following
example, the stack is used to identify records in the data file, and these are averaged.

addstack, 25 ; Add index 25 to stack
addstack, 30, 39 ; Add indices 30 through 39 to stack
avgstack ; Average the stack (data in records 25, 30-39)

22

In the following example, we select some data associated with the “LL” polarization and average them.

emptystack ; Start with an empty list
select,source="W30H’,scan=[177,178] ,pol="LL’ ,cal="F’

tellstack

liststack

delete,4 ; Remove record 4 from the list
avgstack ; Average the three scans in the stack
show

8.4 Averaging Data not Aligned in Frequency

Suppose you wish to average spectra that overlap in frequency but are not exactly aligned. You must
use fshift to determine the shift needed to align the spectra, apply that shift using gshift, and then
add the spectra to the accumulator and average. For example:

getps, 30

accum ; Accumulate first spectrum, no alignment needed yet

getps, 32

fs = fshift() ; Determine the shift to align scan 32 with the spectrum in
; the accumulator

gshift,fs ; Apply the shift to scan 32 in the PDC

accum ; Add the result to the accumulator

getps, 34

gshift, fshift() ; A1l in one line, shift 34 to align with the accumulator

accum

ave

It is also possible to align spectra on the basis of velocity using vshift, or using the current x-axis units
using xshift.

8.5 Smoothing Data

GBTIDL provides users with 3 different smoothing options: boxcar, Gaussian, and hanning. In each
case it is possible to use ”decimation”, which means that every n-th channel will appear in the smoothed
spectrum, n being determined by the smoothing parameters. Boxcar smoothing requires a parameter
to specify the width of the boxcar. The gsmooth feature convolves the data with a Gaussian of width
\/ newres? — origres?, where newres is the new resolution given by the user in units of channels. The
hanning smooth uses a 3-channel hanning filter. Examples:

getps, 25 ; Get some data into the PDC

boxcar, 4 ; 4-channel boxcar smooth, no decimation

getps, 25 ; Get some data into the PDC

boxcar, 2, /decimate ; 2-channel boxcar with decimation (keeps every other channel)
getps, 25 ; Get some data into the PDC

gsmooth, 4, /decimate ; Smooth to 4 channels & decimates (keeps every 4th channel)
\end{small}

getrec, 1 ; Get some data

hanning ; Apply hanning smooth and show the result

23

8.6 Fitting Gaussian Profiles

The procedure fitgauss is used to fit Gaussian profiles to spectral line data. Since a Gaussian function
approaches zero away from the line center, you get the best results by subtracting a baseline from the
data prior to using fitgauss. In general the procedure for Gaussian fitting is as follows:

e Subtract a baseline from the spectrum of interest.
e Using the plotter, zoom in to a region near the lines to be fit.
e Run the fitgauss procedure

— Mark the line to be fit using the left mouse button. Only the channels selected will
be included in the fitting algorithm. By selecting carefully, it is possible to have
the procedure ignore any nearby lines or even fit one among blended lines.

— Using the middle mouse button, click first on the peak of the line to be fit, and
then middle-click again on the half-power point. These two clicks specify the ini-
tial guesses for line height, width, and center used by the Gaussian fitter. To fit
multiple profiles simultaneously, continue to click the middle mouse button to mark
additional lines.

— When all lines have been marked, click the right mouse button to do the fit.
To retain the continuum level in a fit of absorption lines, the following recipe can be applied:

e Determine the continuum level of the source.
e Fit and subtract a baseline.

e Fit the absorption line with a Gaussian and save the model using the modelbuffer
parameter.

e Add the continuum as a bias to both the data and the model.

For example, suppose we wish to fit an absorption line on a 1.5 Jy continuum source, and display the
fit as an overlay.

setregion ; Set the baseline region

nfit, 3 ; Plan to fit a 3rd order polynomial baseline
baseline, modelbuffer=3 ; Fit and subtract the baseline. Continuum is also subtracted.
fitgauss, modelbuffer=10 ; Fit the Gaussian and store the model in buffer 10
bias, 1.5 ; Add the continuum level back to the data

copy, O, 5 ; Store the data in buffer 5

copy, 10, O ; Copy the model to buffer 0

bias, 1.5 ; Add the continuum level to the model

copy, 0, 10 ; Return the model to buffer 10

copy, 5, O ; Return the data to buffer 0

oshow, 10, color=!orange ; Overlay the model on the data

8.7 Introduction to Flagging and Blanking Data

RFI and other faults that cause intermittent or frequency-dependent bad data make it necessary to be
selective when operating on a data set. Bad data can be addressed with a combination of flagging and
blanking. Flagging is the process of assigning a set of rules for marking bad data. Blanking is the process
of applying these rules to the data, and replacing the flagged data with a special blanking value. See
the “More About Flagging Data” section in the Appendix for more information.

24

The most common purpose of flagging and blanking is to identify data to be excluded from a calibration
or averaging operation. As such, flagging is usually applied to raw data and data that have not yet been
averaged.

In GBTIDL, the special value for blanked data is the IEEE not-a-number (NaN). Many native IDL
procedures already recognize that value and treat it appropriately. So, operations such as fitting and
averaging will ignore NaN values. As an example of the special handling of blanked values, consider
the show command. It handles the special values by putting gaps in the plotted spectrum at the
locations of blanked data. The stats procedure simply ignores any blanked channels in computing
the statistics. The hanning procedure blanks channels in the smoothed spectrum whose constituent
channels are themselves blanked. In general, procedures know how to take the appropriate action when
they encounter blanked data, and this action varies depending on the procedure.

Blanking is automatically applied to data when it is read into memory using the calibration or I/O
procedures such as get, getfs, getps, etc. Blanking can also be applied by using the replace command.

As an example, suppose you have a spectrum displayed in the plotter and you would like to blank bad
data in channels 500 to 525. The following command will perform the task.

replace, 500, 525, /blank ; Blanks the range of channels from 500 to 525

Flagging is different from blanking in that flagging does not change the data in a data container. Instead,
flagging commands are associated with data on disk, and describe which of those data should be blanked
when it is read with the GBTIDL I/O routines. The flagging commands are stored in a separate file
from the data file, so you can unflag data or selectively ignore or apply certain flagging rules without
changing the data on the disk or in memory.

Examples of setting flag rules, changing flag rules, and blanking data:
You know your data are bad in channels 500 to 525 and 1000 to 1100 for scan 11 but just in

plnum=1 and ifnum=2. However, the data in the two channel ranges are bad for different
reasons. The flags would be set and the data blanked like this:

flag, 11, plnum=1, ifnum=2, $; Flag and label "rfi"
chans="500:5256", idstring="rfi"

flag, 11, plnum=1, ifnum=2, $; Flag and label "acs_glitch"
chans="1000:1100", idstring="acs_glitch"

getfs, 11, plnum=1, ifnum=2 ; Flagged data are now blanked in the PDC

Notice the use of idstring to document the reason a particular flag is being used.

If you have set up flagging rules but wish to ignore them when reading the data, the following
command will retrieve the data without blanking:

getfs, 11, plnum=1, ifnum=2, /skipflag ; No flags are applied

If you want to flag the first integration of a range of scans because you suspect the telescope
was still settling and not on target:

flag, scanrange=[6,10], intnum=0, idstring="first int" ; Flags integration O of scans 6-10
To view all the flag rules that have been set, use the listflags command:
listflags ; Produces a list of all the flag rules established

To remove a flag rule, use the unflag command. This works by either providing the idstring
attached to a flag or an integer matching an ID number as shown by listflags:

unflag, "first int" ; Unflags the rule with the id string "first int"

More examples can be found in the “More About Flagging Data” section in the Appendix.

25

8.8 Statistics

Statistics are available from the stats procedure. If stats is given no parameters, you must specify
the range over which statistics are calculated using the mouse cursor. Otherwise, stats can take two
parameters, indicating the begin and end values for the range, in units currently displayed on the plotter.
The /chan keyword can be used if you want to give the range in channels regardless of the current plotter
units. For example:

getrec, 1 ; Get some data

stats ; Prompt user for the range using the mouse

stats, 1420.0,1420.1 ; Show stats over the specified range

stats, /full ; Show stats over the full spectrum

stats, /full, ret=mystats ; Return statistics to the IDL data structure called mystats
print, mystats.mean ; Prints the mean value stored in the mystats data structure
print, mystats.rms ; Prints the rms value stored in the mystats data structure
stats, 0, 99, /chan ; Show stats for the first 100 channels

Here is an example of the output of the stats command:

GBTIDL -> stats
Click twice to define stats region

Chans bchan echan Xmin Xmax Ymin Ymax
13661 10692 24352 1.6103 1.6155 -4.0177 14.259
Mean Median RMS Variance Area

-0.14350 -0.051825 0.55484 0.30785 -0.00074783

8.9 Using the Select and Find Features
8.9.1 Select

The select procedure in GBTIDL is used to search and select records from the input data set and add
indices of the matching entries to the stack. To locate the relevant records, select uses the contents of
the GBTIDL index file. The parameters for the search procedure are the same as those for the get
procedure given in section 6.2. The procedure listcols can be used to list all parameters available for
searching. Note that in this procedure, like all IDL procedures, the parameter names do not need to be
typed in their entirety, only enough characters to uniquely identify the parameter are necessary.

To select all records associated with a given source name:
select, source=’3C286’°

Multiple parameters are combined with a logical AND, so the following command selects all 3C286
records between scans 100 and 119:

select, source=’3C286’, scan=seq(100:119)
To select specific integer values, use an array as follows:
select, source=’3C286’, scan=[100,102,104,106]

The syntax for selections depends on the data type that is being selected, as shown in the following
examples.

Integer Searches

26

select, index=10 ; Selects one index

select, index=[10,14,17,18] ; Selects a list of indices
select, index=’10:15,20:23’ ; Selects the given ranges
select, index=’:30’ ; Selects indices less than 30

Float Searches

select, tsys=’33.26’ ; Selects values between 33.255 and 33.265

select, tsys=’33.0:38.0’ ; Selects the range 33-38 K

select, tsys=’:45.0’ ; Selects based on Tsys < 45.0K

select, tsys=33.26 ; Selects values that are exactly 33.26, rarely useful

String Searches

select, source=’NGC1068’ ; Select based on single string value
select, source=[’NGC1068’, ’NGC1069’] ; Select from a list of strings
select, source=’NGC*’ ; Wildcards allowed at beginning and end of string

8.9.2 Find

The find procedure and the related procedures setfind, clearfind, and listfind (each described below)
use select in a way that has been designed to mimic some of the features of the CLASS find command.
The find command is particularly useful if you want to repeat the same or slightly modified selection.
Each use of find first clears the stack (unlike select) unless the /append keyword is used.

e setfind: Used to set specific selection criteria. Once set, they remain set until cleared
using clearfind.

e find: Used to place the entries specified by the setfind command into the stack.
e clearfind: Used to clear the current setfind selection criteria.

e listfind: Used to list a specified selection parameter or all selection parameter values
used by find. This allows you to tell the value of one or all of the selection parameters
used by find.

Examples:

First define the initial selection criteria:

GBTIDL -> setfind, ’scan’, 80, 82 ; Select scans 80 through 82

GBTIDL -> find ; Add the selection to the stack (See 8.1)
Indices added to stack : 288

GBTIDL -> listfind ; Show current selection parameters

A1l set FIND parameters for LINE mode

SCAN 80:82

Then refine them:

GBTIDL -> setfind, ’polarization’, ’XX’ ; Select only the XX polarization

GBTIDL -> find ; Update the stack so it only contains scans 80-82 with
Indices added to stack : 144

GBTIDL -> listfind ; Show current selection parameters
All set FIND parameters for LINE mode
SCAN 80:82

POLARIZATION XX

27

Refine them again:

GBTIDL -> setfind, ’int’, 3 ; Select only integration 3
GBTIDL -> find ; Update stack to only contain indices that satisfy all
Indices added to stack : 24
GBTIDL -> listfind ; Show current selection parameters
A1l set FIND parameters for LINE mode
SCAN 80:82
POLARIZATION XX
INT 3

Change your mind and decide to include integration 4 also:

GBTIDL -> setfind, ’int’, 4, /append ; Use the /append keyword to add data
GBTIDL -> find ; Add the 4th integration indices to stack
Indices added to stack : 48
GBTIDL -> listfind ; Show new selection parameters
A1l set FIND parameters for LINE mode
SCAN 80:82
POLARIZATION XX
INT 3,4

8.10 Mapping

GBTIDL currently does not support mapping. There is a mechanism for exporting SDFITS data into
classic AIPS. Contact your GBT support person for details.

8.11 Other Analysis Procedures

The following table lists additional analysis commands that may be useful. More information on these,
and other commands, can be found in the User Reference or by using the usage command.

Procedure Action

clip, datamin, datamax Truncate spectrum to a min and max data value

decimate Decimate the spectrum by paring channels

gconvol Convolve the spectrum in the PDC with an array

gfft FFT or inverse FFT the spectrum

ginterp Interpolate across blanked channels

gmeasure HI profile fitting procedure

gmoment Caclulate first 3 moments

invert Flip the data end-to-end

molecule Show molecular transition frequencies on the plotter

powspec Compute power spectrum

recomball Plot the H alpha, beta, gamma; He alpha, beta, and C alpha recombination lines
recombc Compute and plot frequencies of Carbon recombination lines
recombhe Compute and plot frequencies of Helium recombination lines
recombh Compute and plot frequencies of Hydrogen recombination lines
recombn Compute and plot frequencies of Nitrogen recombination lines
recombo Compute and plot frequencies of Oxygen recombination lines
replace Replace bad data values

resample Resample the spectrum in the PDC at the new interval

9 Saving and Retrieving Data

To save data to disk, first specify the name of the output data file using the fileout command. The
default file is called “GBTIDL keep.fits”. The name of the data file must end in “.fits”. Spectra can be

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/index.html

28

written to this file using either the keep or nsave command.

9.1 keep

The keep command saves a spectrum to the output file, appending the data to the end of that file. For
example:

getnod, 30 ; Get some data

fileout, ’mysave.fits’ ; Open an output file

keep ; Writes the PDC to the file
getnod, 32 ; Get some more data

keep ; Write the PDC to file
getfs,48,/nofold ; Get some more data

keep ; Writes the PDC to file
keep,5 ; Writes info in DC 5 to file

9.2 nsave

The nsave feature allows you to store data in a file and attach an identifing number (the nsave value)
to that entry so that the data can be overwritten or retrieved according to the nsave value. The utility
essentially gives you access to an unlimited number of storage slots on disk, somewhat like the 16 global
buffers kept in memory.

The following GBTIDL procedures are relevant to the nsave features.

Command Purpose

fileout Set the output file; note this can be used for both keep and nsave
nget Retrieve a spectrum with a given nsave value
nsave Store a spectrum to disk with the given nsave value

sprotect_off Enable overwrite permission
sprotect_on Disable overwrite permission

The following sequence shows how to store and retrieve a spectrum using the nsave feature:

fileout, ’mynsave.fits’ ; Open a file for writing

getrec, 10 ; Get some data

nsave, 101 ; Store it to the keep file

scale, 5 ; Perform some operations

nsave, 102 ; Store it with a different nsave value
nget, 101 ; Retrieve the spectrum at nsave=101

The next example shows a more sophisticated nsave example. Here each nsave entry stores a calibrated
integration from a scan. The example demonstrates how the nsave values can be overwritten and each
nsave entry has an attached meaning to the data, for example nsave=1002 is the data associated with
scan=100, int=2. As the calibration of this integration is refined, the spectra are simply stored back
into that nsave slot.

fileout, ’mynsave.fits’ ; Open a file for writing
for i=0,5 do begin $; Store each integration
getnod, 100, int=i & $
nsave, 1000+i & $
endfor

nget, 1002 ; Retrieve one of the entries

bias, 0.1
nsave, 1002

for i=0,5 do begin §
nget, 1000+i & $
accum & $
endfor

ave

29

; Do some work on it
; And reinsert it into the file

; Now execute a loop to average all
; the data including the processed
; integration. This loop could be
; made into a separate procedure.

9.3 Retrieving Data from the Output File

To retrieve data saved using GBTIDL, it is possible to open the file as an input file and use the get and
getrec commands. The following example illustrates.

getnod, 101

fileout, ’mydata.fits’
keep

getnod, 103

keep

fileout, ’KEEP.fits’
filein, ’mydata.fits’
getrec, O

>

>

Get a spectrum from a previously defined input file
Set the output file name

Store the spectrum in record O of the keep file

Get more data

Store the next spectrum in record 1

Close mydata.fits and open a new output file

; Reopen mydata.fits it as an input file

Retrieve the first entry

Alternatively, data can be retrieved directly from the output file using kgetrec or kget.

getnod, 101

fileout, ’mydata.fits’
keep

getnod, 103

keep

kget, scan=101

Get a spectrum from a previously defined input file

Set the output file name

Store the spectrum in record O of the keep file

Get more data

Store the next spectrum in record 1

Retrieves scan 101 from the output data file and places it in the PDC

The kget command uses the same selection parameters as the get procedure.

10 Writing Your Own Procedures

GBTIDL is designed to allow you to write your own procedures easily. The best approach to writ-
ing your own procedures is to start by looking at the code of a similar existing procedure. All the
code in GBTIDL is available for your perusal in the Green Bank and Charlottesville installations at
/home/gbtidl/release/gbtidl. All of the NRAO-developed or modified code can be found in the pro
subdirectory, user-contributed code can be found in contrib, and IDL code from other sources can be

found in the lib subdirectory.

To write custom procedures, you should become familiar with IDL programming, and with the data
container structure. Here is a simple example of a procedure to use as a template. This example scales
the data in the spectrum by a factor given by the user.

pro myscale,factor

tmp_data = getdata()
tmp_data = tmp_data * factor

setdata, tmp_data

if !g.frozen eq O then show

end

30

Suppose the code is stored in a file is called myscale.pro. To access the function, do this:

.compile myscale.pro ; Compile the program

show ; Show the data

myscale, 2 ; Scale the data by a factor of 2
That’s it!

You can put procedures in the directory from which you are running GBTIDL, or in a special subdi-
rectory off of your home directory called gbtidlpro. In case there are procedures with identical names in
your IDL path, the directories will be searched in the following order: first the current directory, then
$HOME/gbtidlpro, then the GBTIDL installation directories, and finally the IDL installation itself. If
the file isn’t in one of these directories, you will need to specify the path when compiling it:

.compile /users/aeinstein/mypros/myscale.pro

31

‘owiry Aue g osn ur are [yguiQ,] pue [1g‘y| st odeys oy,

1y QUI[dse(JUIIAI }SOW 9} Jo sIojourered ayy Surp[oy Aeire (g 0 Keire a[qnop 1gArod

‘(ourpeseq pue odeysq) 1y aul[eseq € I10J IOpIo [erwoukjod JueddI SO 1- I108o9ur Suof yu
umoys are sjord mau

se quogsisiod aie 19990[d 93 UO SoXO(UOIFaI oYY ‘ONI) USYAA 0 I10309ur uo| soxoquOI3al

[(1-uor8o1u):(,] “A[3ueIINd SN UL OI® JeY) SUOISAI Ul SUOIFoI JO IDqUINU [R)OT, 0 I10809ur Suog uor3aIu
‘uoI3eau AQ USAIZ oI 9ST Ul SUOIZal [BNIOY

Sury9y ur esn oy suorSex Surpjoy Aeare [p01‘g] odeys yum (g - IV Aerre 10809ur Suof suot3oux

$9INIONI)S JONIIS"WNIOR
‘Te 90 ‘oAe ‘wmnoor A Posn SI9PNQ Wnodoe j Jo Ariie uy jonIys wnode Ajduwe ¥ Jo Aeiry jnqunooe
‘pasn A[[enjoe yoelse Jo son[eA jo Iaquinn 0 1080qur Suof junooe

‘pOpesu Se POpULIX® ST SIY} JNq SIUSWS[S 0ZTG A[[eriu]

's10809ur SUO[JO Aelle U Se ‘SIUOJUOD }ORIS OY T, Tequtod soelse

'S10[0D Aue 3uriousI ‘ojym pue dor[q oq [[im 1diios)sod pejersus8 ‘eniy jou | I103029ur uo| 1drrosysodaofoo

(eanseowi8 ‘ssnedy) eyep payySIySIy 10j 10[00 }nejoq I10309ur uog 107029y ST[Y31Y

1X9] MOYsS3 10] I10[0D Jnejo I10899ur Suog I0[02)x09ssned

moys8 10J 10[00 Jmejeq I108oqur Suof 10100MOYST

XO(WOO0Z I0J 10102 j[nejo(Ie89qur Suof 10[00W00Z

I0[0D |ul[A Y neJo(I10309ur 3uo| I10[002UI[A

jo1do 10j 10709 e I10309ur Suog 1010o301do

9jejoUUE IOJ I0[0D J[neja(] 1089qur Suof Io[od9jejOoUTR

10100 IoyIew jnejo I108oqur Suof I070dI9¥ IR W

10[0D 2UI[-019Z J[nejo(] I10399ur 3uo| 101009Ul[Z

I0[0D ITRYSSOID j[nejoJ I10309ur uo| I0[ODITRYSSOID

(MOYSO,, I0] I0[0D Nejo 1080qur Suof I0[02MOT[SO

(MOTS,, I0J I0[0D j[neja(] 1089qur Suof I0[0OMOTS

10702 punoigaro} 13jo1d ymejeq I108oqur Suof punouigaioj

10[00 punoagyoreq 191j0[d Jnejeq I10399ur 3uo| punoassyoeq

(sqol uo1> "3'9) SUOISSOS 9AI}ORIDIUI-UOU I0] () O [IM I10309ur uo| 9AT}ORIOUT

10330[d & 9sn jouUURD JeY) SUOISSOS YSINSUI)SIP 0} Pas() I10809ur Suog Aerdsip~sey

A1100[9 =7 ‘Aousnboaif=T7 ‘spouueypd=Q 10899ur Suog adAy-sixe-193jord

'019u00°3] pue O°3j= 9s[o ‘posn aIe orUI['3| pur s'S| ‘ONIy USYA\ I108oqur Suof aur|

T PARS, 0] SI9JAI S, "INO9[Y Ul JAVSN UR 9)LIMISAO 10U URD NOA ‘ONI) UM\ I10399ur uo| j00301ds
‘pesSueyd st

[0]2°8j 10 [p]s'8j 199y (uwdZOI) pojepdn jou st 193301d O} ‘ONIY WOYA 0 10809ur Suof U9ZOIy

Inoa[y 03 juewnsIe 3se| ayJ, Iy dJHAM TALLID Surrps eureu jNOS[Y-OUI|

opou JuUod, Ul ULIIP IO UI[Y 09 juawndie jse| o], Surrgs oUIRU™ U]~ JUOD

spowr oulf, Ul SUI[UO IO ‘ULIIPG ‘UI_[Y 0} juswingdie jse[oy], Suriys SuWIRU UIS[Y~oul]

100[(0 1991IM~SIYPS~OT Uy 1Y dJHAM TALLID 1200 1991IM~S3PS~OT orynoauI|

129[qo wud~sIYpsTor Uy Poa30ouuod j0u 1290 WUDd~S3YPS~OT o19u0d

109[qo auI["s1yps-or uy Ppo3oauuod j0u 199[qo auI[~s3yps-ol orour|

SOINJONIS BJRP WNNUIJUOD 9T wnnuryuod £yduwe AeIIe IOUIRIUOD BJRP WNNUIIUOD o

seanjonijs viep wnijoads 91 wnajoads Kydwe Aelre Iourejuod vIRpP WNIjoads s

TPT3qS JO UOISIOA SIYY I0J ISYIJUOPI UOISIOA Y 8°C, Surrys UOISIOA

uo13d1Iose(q nejoq odAT, oure N

qonigs/ ‘8§ ‘dley <- TAILID

TALLED ur 9d4A} ‘8 Jo 9INjoNIIS YY) MOIA O, "UNI ST oInpadoid e owir) yoed payroads aq siojourered [re yeyy Surrmbai jou Aq seurpnolr JALLEY Auew
JO 90RLIOIUI 91} SA0IdWI 9I130NI)S SIY} SuIS) "sournol TALLEY) Auewt £q pasn Jj 2INjoNIs [eqo[3 93} JO SFUSIUO0D B} SOQLIOSOP d[qe)} SULMO[[0] YT,

oanjona)s 8 oYL V

32

‘9SN UT SO[NID[OW JO SIUSUIO[D JO IdCQUUINN

‘a[nod[ow Aq Pasn 2InjonI)s y

‘pPugaes[d pue JUC@PWm »—UE@ UM 98N 910 '2INIdNIYS puy oy T,

908 ST Tosn/

uoyM 3[ORISISI] PUE ISI[A POS() 'SOWIRU UWN[0D XOPUI JO }SI] pojeredos-ewruio))
‘pesn HAVSN jue0ad JSOIN

Aouatorge aanjrady

nej yjusy

-osn 0y ogurid oYy SeyIuUapl

sourjnor Surygy ueissney) oY) Aq posn 9INJONI)s o1 J,

‘o) Aue je osn ur axe [yyu:Q] pue [1g] st odeyg 1y ourpeseq

Juedar ysowr ayy ut syerwoud[od (T43yu) oYy jo yoes I0j SINY Surpjoy Kerre 7

1-
L0

00

[[eYS XIUn o1} WoJ S[qerIea
jyusmruoiAtue YHILNIHJd
sjnejop ssnexn)

0

I10309ur uo|

S9INJONIIS JONIFS 9[NOI[OUWT
000¥ jo Leiry

2IN9J0NI3S JONI}S~puUy

Surrys
I10809ur Suog
jeoy

jeoy

Surrys
9INJONIYS SSNeL)

Aeare syqnop

[owru
soTnoa[oUx
puy

S[OD7)SI["I0sn
oAesu

po-de

one}

oqurad
ssnexn)

sutayyjod

33

B Tips on Using Data Containers for Experts

There are 16 global data containers, or buffers, numbered 0 through 15. Data container 0 is also called
the primary data container, or PDC for short. If you find you need more than 16 buffers, one option is
to use the nsave|facility, which allows you to store an arbitrary number of data containers in a disk file.
Alternatively, you can store data containers as IDL variables. If you choose to store data contrainers in
IDL variables, there are a few procedures you should be aware of:

e [data_new: Create a new data container.
e data_copy: Copy a data container.
e |data_free: Free the pointers in a data container or array of data containers.

e set_data_container: Copy a data container stored as a variable into one of the 16
global buffers.

Check the reference pages or look at code examples for help on using these procedures. Make sure that
when you create a new data container (either by data_new or data_copy) you free the pointers using
data_free when you are done, otherwise memory will be leaked.

Be sure to avoid this mistake when using data containers:

GBTIDL -> mydc = !g.s[0]

; ... you do stuff to mydc here

; ... you think you are done, so you free it
GBTIDL -> data_free, mydc

The mistake here is that the initial assignment copies the value of the pointer, not the array that the
pointer refers to. So, any changes to the data array through mydc will also change the data array in
!g.s[0] because they use the same pointer. More importantly, the data_free at the end will also free
the pointer in !g.s[0], likely bringing GBTIDL to its knees.

Instead, use data_copy:

GBTIDL -> data_copy, !g.s[0], mydc

GBTIDL -> set_data_container, mydc ; Resets index O with the contents of mydc
GBTIDL -> data_copy, 'g.s[1], mydc
GBTIDL -> set_data_container, mydc, index=1 ; Resets index 1 with the contents of mydc

GBTIDL -> data_free, mydc

This example illustrates the use of set_data_container to copy a user-named data container into the
global data container. It is not necessary to use data_free before calling data_copy because data_copy
takes care of all pointer maintenance in the output data container without leaking memory.

Also, be aware that when global values are used as parameters to functions or procedures, IDL passes
those values by value and not by reference. So if you send a DC from !g to a procedure or function, all
changes you make to that DC will remain local to that function, and will not be retained in the global
variable.

If you need to work with an array of data containers here is one way you might do that:

Suppose you want to run getfs on scans 50 through 100 and defer saving the data to the output file
until the end. The step where the data are written to disk will be much faster if it can all be done at
once, but it does mean that all 51 spectra will be in memory by the end of this operation so you should
consider whether they will all fit in memory at the same time.

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/guide/nsave.html
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/toolbox/data_new.html
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/toolbox/data_copy.html
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/toolbox/data_free.html
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/user/guide/set_data_container.html

34

dcarr = replicate({spectrum_struct},51) ; Create un-initialzed array of 51 data containers
freeze ; Turn off the plotter’s auto-update feature
for i=50, 100 do begin ; Loop over the scan numbers

getfs, i

tmp = dcarr[i-50] ; Copy that to dcarr (this is the tricky step)

data_copy, !g.s[0], tmp
dcarr[i-50] = tmp

endfor
putchunk, dcarr ; Save it
data_free, dcarr ; Free up the memory

The tmp variable is used in the for loop because of the aforementioned issue of IDL passing elements
to functions and procedures by value and not by reference. So we assign to ¢mp the specific element of
dcarr that we want to modify. That gets a copy of everything, including the pointer. Inside data_copy,
tmp is modified and since tmp in this case is passed by reference (because it is not a global value and it
isn’t an array element), changes to tmp will be seen outside of data_copy. Once data_copy returns,
the values in tmp (including the now valid pointer containing the copy of the data array) will be copied
to dcarr. It is not necessary or desirable to use data_free on tmp because that would also free the copy
of that pointer in dcarr. That pointer is freed at the end. Be sure and free up all of the pointers that
you create this way so that memory is not leaked.

35

plw 03 Surpuodsai10o ‘0in Ypm Suore ‘(QA-ININ-AXAX) @1ed [sqoogep] 9)ep JULIIND Sutnys a9ep

‘LAAVD ‘A ‘G 8o ‘ogerrdoirdde uaym welsAs 93eUIpIo0d [eLI04INDO Oy T, [Surrys sAsopel
‘oreridordde weym ‘sonjeA SIXe apnjIje] pue apnjrSuol ayj jo ‘sieak ur ‘xoumnbs oy T, 0°000% s[qnop xoumnba
(1 10 n) pueqepts oY, Surys pueqaprts
[oUURYD~90UI9JAI 919 Je Z[ul Aouenboij (A3s) poAlasqo oY, 00 a[qnop Aouenboij-poaresqo
ZH Ul yiptmpueq [0, qiptmpureq 00 s[qnop qiprmpurq
(waey oyads-1,go &) opdwes ay) jo swreu oy J, Jordures Surys owreu-ojdures
S99189p Ul ‘SIX® UOIJRAS[d 9Y) 10] 19SJO UIeag 00 a[qnop Poopoa)
S00I30p Ul ‘SIX® UOI}RAD[O-SSOIO 9Y) I0J }0SPO weag 00 a[qnop Poxpooj
‘uROS [ORO I0J () WOJJ SJUNOY) 'Pad) SIY} JO Ioquunu oY J, wmnupj 0 Jo8ogur Suof wnu-podj
*0d00so[99 97} e UMOUY Se dWRU Pad) SUIYDIIMS 9T, 0 Io8ogur Suof poojas
*0do0so[9] 97} e UMOUY S 9WRU Pad) 9y J, po9J 0 1080gur Suof poaj
‘ueds [oes I0J () WoJJ sjunoy) ‘rsqunu uorjezurejod oy], wnud 0 Ie89qur Suof wnu-uorjezirejod
uorjezirejod oy J, uotyezrrejod Surigs uoryezirejod
"MEHLO Pu® “THZV ‘DHAVH ‘DLLOVIVD ‘DHAVY 21 s9d1oyd 9[qIssoq
(EAJALD PUe gHJALD Wwoly pairojur) uoryoaarp Surjuiod oy 10J 93eUIpIo0d Jo odAy oy, OHAVY Jurys opOowW~93eUIPIOOD
(s1979w UT UOTYRAD[d ‘s90IF0p Ul 9pnjIre| ‘s§9a18op ul opnjrsuo] 1ser) 1D 9Yy3 Jo uoryesory so[qnop ¢ UO1)BOO[~ 9IS
9doosa[9] Y1) JO sweN LD OVYIN 3utrys adoosa[a9
3] Ul ejep siy} Aq pasn ejep 90UaIsjal Jo ainjeiodua) wWeIsAg 01 reoy JoasAsy
3] ur ssedpueq aI13Ue 9} SSOIOR ON[RA [BD], UROW O T, 01 arqnop [eo) urOW
3 ul aanjeroduwo) wo)sAg sAsy 01 1eoy sAsy
1°0 womndeyy Aypruny oy, 00 reopg Ayrprumy
ed ul aanssaad oy, 00 1eoy aanssoad
3] ul eanjeroduwog) jusIquuIe oY J, 00 jeoy JuerquIR)
Spuooes ul ‘owl) Sunjue[q Jurpnoul ‘ejep syl 3urjoo[[od juads awI) }O0[d O, 00 arqnop uorjeInp
SPUO0D9S Ul 9WI} UOIJRISIUT AT} H aansodxo 00 a[qnop aansodxe
auwreu (I9A19291) PUSIUOL] Surys puajuory
suwreu puoyoeg Suriys pueoeq
Oy SLIA 0D LD 9Y3 woyy ‘prueds mdeueut 1,0 pisqo Surnys pisqo
‘Teorjuepl sem dnjes oY) JI SI9UTRIUOD BIRD
I9Yj0 ur] oures oY) 03 puodsariod [[im YAGINNAN-AI 243 ‘“erep gD 10 "loqunu JJ Y], wnujt 0 I08ogur Suof IoquInu-ju
(0 woay Suryrels) requinu uoIPRISIUL Y J, jut 0 Ie89qur Suof uoryeigdajul
‘MO 10 HOIH Ioyie Ajjpuaiiny) ‘[ed jo adAg oy, 3utrys adAqed
PO sem 31 9SIMIOYJO ‘U0 sem Ted oy} (T) aniy J reo 0 Io8ogur Suoy 23e)sTIed
97®)S 9OUDIDJOI O} ISIMIDYIO ‘93e)s [eudis oY) ST s1y) (1) anay JI 318 1 I08ogur Suof 99e)s~ 318
‘oanpodolad sy} SULINp pasn dweyYds [RUSIS SUIYIIMS 9 T, Surys 31s7yoIMS
roanpoooad siyj Surnp pesn Julyojims jo odAy oy, Suriys 91e)S~YOIMS
(eanpoeooid) ueos siy3 10j pajoadxe suRISqNS JO IOQUINU [B}O], 1 I108equr Suo| az1sooad
ainpedoid 3uralesqo oy} Jo awreu oY J, aanpoedoxd Sutnys aanpedoxd
'a[y 9ndgno oYy 0y s1yy
oAes 03 posn sem JAVSN J1 0 = 9q A[UO [[IA\ "O) POARS U9(SeY SI) UOI}RDIO[dARSU O T, aAesu 1- 1980gur Suof EYNCH
Joquinu eousnbes eanpecoad oy J, ubesooad 0 Io8equr Suof ubesooad
IsquInu ueds oy J, ueds 0 I10899ul Suo| IoquInu-ueds
i eloig 100loxd Surnys pifoad
oUWIRU S, IOAISS() Jurys I9AI9SqO
auwIeu 92In0g 22In0s Surys 90In0s
‘RjRp 9YJ JO sjUN Oy, Sjunod Suriys sjun
"ejep GOV J10J ATUO dnfeA 931Uy ® o [[IA oY SLIAJS 90Ul WOIJ onjea URYO0IdZ oY T, NeN a[qnop [ouuRYD~0I0Z
‘Son[eA B)RD 103 0] POOUQIdJoIap 9 ISNJ "Aelie vjep oYJ, 0 Aeire jeoy o9 1ojutod 1yd-ejep
uorydriosa(q Xopuj ey odAfT, ouIre N

*$91y SLIACIS JO SHUOIUOD 9y} UO PI[OpOU A[9SO[D SI J] "IOUIRIUOD BIep WILIPAdS 9} JO SJUSIU0D 8} SOLIISIP e} SUIMO[[0] O],

Jourejuo)) eje(J wniyadg ayjy Jo sjuajuo) O

36

*J1 JO SN ¥RUI O} [SIM OUM SI9ST PedUsLIadxe 10} 9197 popnyoul st Jnq seinpadold TIIgE) 9109 Aue Aq pesn j0u st anfea o], o[SIIACS
oY Jo UWN[od NVHOOMHZ Y} Ul Pal1ojs sI anfea () oY} pue N yYSnolyy] S[EUUBYD WIOIJ U} oIe Sonjes ejep oy, ‘sorousnbaij enbrun [+)N oIe
a101]) ‘e0eds Aouanbeij 0} sSe woOI] paurlojsuel) are sge] N o) usyp) "(SOV) Ioeuror}oads o1} WOIJ ®)epP I0] JURASAI ATUO ST ON[RA TOUURYD 0ISZ O],

“IoUTR)UO0D B)eP 9} WOIJ SP[AY 91l PUR 9)ep 9} Ul UOIJRULIOJUL 1) SSUIqUIODd YDIYM ‘B[STIACS oY} wolf anfea SGO-AILVA 1Y oY) 03 spuodsa1iod
9UIR XOPUI SO91EP 9] JBI[} 9JON UOIIJ[0S 10] 9[(e[leAR JOU SI PUR Il XoPUI o1} Ul pajuasaldal j0U ST P[oy 1ey) ‘Yue[q ST AIJUL Topuf o1 J] ‘PURTITIOD
STOD9SI] 973 A(POILINJOI SOUIRU 91} oIR 9T, O[J XOpul oY) Ul Aq WMOUY SI P[OY [OrS JRI[} SUIRL O} SMOT[S Z9pu] PO[Oqe[d[qe) SI[} Ul UWN[od dYJ,

ejep pojeIqi[ed I0J ZH Ul 9)e)s [RUSIS oY) 0} 91eIs SUIYDIIMS 9OUAIDJOI O} JO 9SO oY T, 00 arqnop josgo-yojIms-boay
uoT)IUYOp-A3100[oA AQ USAIS UOIIUYSP PUR SUIRIJ SOUIIDJAI 97} UI /W Ul 92INOS 99 JO AIDO[OA Aq10070A 00 a[qnop A9100[9A~90INOS
Z} Ul 9se1ejul Jo aul[Jo Aouenbaiy 1soy baajysax 00 a[qnop Adousnbaij-gseraul]
uoryisod puodes=71- ‘uorjisod 9siy=7 ‘Suraow=() ‘JUIPPOU I0109P2IQNS USYM 8)B]S 10309[JoIqNg Joiqns 1 Ie8equrl 9)rlsTJoIqns
S00IF0p Ul UOIJRADF UOI)RAD[D 00 a[qnop TOI1RAD[D
S99I30p Ul YINWIZY ypnuize 00 a[qnop nuwize
UOI9BO0[™911S 97 USAIS 99ep U0 DI, 0) Sulpuodsailod spuodas ul [, 9YJ, 18] oUW} JUSILIND WOIJ a[qnop 18]
s/w ur odooso[a) oY) 09 oadsal Yjim awredj paspery orddop oy jo £3100[0A (DIISTATIR[AI) ONIT, 00 a[qnop A1100[0A"0TR L]
piom&ay JHATHA SIIAAS SdO-1avyd Suts uotuyep-43ooea
9lY SLIA OD 92U} Wodq 'SIXe opnjlje] Se WojSAS 9)RUIPIOOD owes 97} Ul
s90180p ut worpoearp Surjurod opnjijey (901nos) j08Ie) OY T, 1e1381) 00 a[qnop apnjrye[jodie)
9lY SLIA OD 92U} Wolq ‘SIXe 9pnjI3uo[se Wo)sAs 9)eUIPIOOD duIes dy) Ul
soa18op ur uoryoaarp Surjuiod apngiSuo| (901nos) je81e) oY J, 3uory31y 00 s[qnop apnjrduol-jedie)
xouinbe je opowreleUIPIOOd Ul $90130p Ul UoIj0aaIp Surjutod opnjijey oy J, opnjIe| 00 a[qnop sIxXe-opnjiye|
xoutnbs je opowr-ojeuIpIood ul seardep ul uoroairp Surjurod opnjISuo] oY, opnjIsuoy 00 a[qnop sixe-opnj}iduo|
‘UO0I1909[9S 10J 9[qR[IeAR ST PUR O XopUI 9y} Ul Pasn SI SIYJ,
‘Aouanboij-eouslajol oq j0u AU YOIYM ‘[oUURYD I19)U0d oY) Je ZJ ul Aousnboiy oy T, baijjued 00 a[qnop Aouenbaij-109ued
‘ZH Ul ‘[ouueyd 9UO JO UOIIN[osal [ei3oads oy], soxbaiy 01 s[qnop uornjoser Aousnbouy
(1)3-(1+1)3 :speuueyd juedelpe usemioq zi ut Juroedg qurboay 0T arqnop reaojurKouenboay
[PUURYD 90UDIOJOI O T, 1 + g/(13d ejyep)sjuowoo-u arqnop [PUURYD~9OUDIOJOI
[PUURYD~OOULISJRI O] Je ‘ZH ul ‘Aousnbaig [PUURYD 90UDIDJOI a[qnop Aouenbaij-eouaiajol
IV PU® ‘Yvd “THH ‘OdD ‘dST “UST ‘OdO, 21 son[ea pazrugoday
THJALD woiq -sixe Aousnbaiy oy jo uorydriosa(0OdoL 3utrys ad Ay~ Aouenbaiy
‘sIoquInu urds pojeodol oIr 019} USYM UOIJO9[0S BIRP UL Pasn o ued
ST "SSININ'HH A ININAAAA USR] Sem |1 USYM URDS o1} 0} UaAl3 dwrejsowr) oy J, durejsourry jnejop Jurgs durejsouury
sAep ur uoryerdajurl jo jurod-pru e 93e(URIN[PIYIPOIN ouwIl} pUR 9)eP JUSLIND WOIJ a[qnop plu

plw 09 spuodsol11o) '9)ep JO 1IR)S 2OUIS SPU0OIdS O I.N [sqoagep] QUIT} JUDLIND a[qnop on

37

(T 10) pueqopts oY, Surnys pueqopis

‘ssedpueq oY} Jo 19ju90 9y} e Z[Ul Aouonboij (4£¥s) paaIesqo oYJ, 00 aiqnop Aouenbeij-poarssqo

ZH Ul yiptmpueq [0, 00 |rqnop qiptmpueq

(wieg oywoads-1,go &) rojdures o) Jo dweu oy J, Suriys swreu-1o[dures

$90180p UI ‘STX® UOI}RAS[d d1[) I0J J9s[JO wreag 00 a[qnop JPoopoaj

S00I30p UI ‘SIX® UOIJRAD[O-SSOID 919 I0] JOSPO weag 00 arqnop Poxpooj

‘ueOS [ORD I0J () WO SJUNOY) 'Padj SIY} JO Ioquuinu oy J, 0 Io8ogur Suof wnu-poaaj

‘0d00so[9] 91} 18 UMOUY SB SWRU Pad) SUIYDIIMS o1], 0 I980gur Suof poajs

‘0do0so[9) 81} Je UMOUY S oWRU Pod) oY], 0 Io8equr Suof pooj

‘ueds OwS I0J () WOIJ sjunoy) ‘Iequnu uorjezirejod oy, 0 I10899ur Suo| wnu-uorjezirejod

uotyezirejod oy, uorjezrrejod Suinys uoryezirejod
"YIHLO PU® “THZV ‘DHAVH ‘DILOVIVD ‘DHAVY ' $90107d 3[qIssoq

(€HJALD PUe gHJALD Wwoiy parigjul) uordaap Surjurod ay) 10J 9)eUIpIo0d Jo odA) oy, OHAVY Surys opowW~93eUIPIOOD

(s199ow1 UT UOIYRAS[S ‘s99180p Ul 9pnNIIe] ‘S9aI18ep Ul apnjIsuo] 1ser) 195 9Yy2 Jo uoiyesory se[qnop ¢ UOoI11eI0[~91S

2doose[a9) 21} JO aweN LD OVUIN Sutrys odoosarey

3 ul eyep STY) A9GQ PoOsn vjep 90UIdjal Jo sanjeroduwo) wo)sAg 01 1eoy JoIsAsy

3 ul ssedpueq aI1Ue 97} SSOIOR ON[BA [BD], URdW O T, 01 a[qnop [eo) - uroW

3 utl aanjeroduwo) wolsAg 01 yeoy sKsy

1°0 uorjoRyy AYypruny oy, 00 reopg Lypruany

eJ ur eanssoxd oy T, 00 yeoy aanssoad

3 ul eanjeradwog juarquie oY J, 00 R0y JuarquUIR)

Spuooas ul ‘owr} 3urjue[q Jurpnoul ‘ejep siyl Surjoa[[od juads owly }O0[d 9Y I, 00 a[qnop uorjyeInp

SPUOD9S Ul U} UOIIRIIIUL SAII0H 00 a[qnop arnsodxe

owreu (I9A19091) PULIUOIL] Surys puejuoly

owreu puoddRed Jurgs puodoeq

posnun Apjuerind ‘oly S LI OO IdH oY) wodj ‘prueds refeurw [gL pisqo Jurgs pisqo
‘Teoruept sem dnjges oy} se SUO[OS SISUIRIUOD BIRP ISYJO0 Ul] dwres oY) 0} puodsaliod

s YAGINOAN- AL @wes oyl ‘“erep g9 10 "UedS yors 10] () WOIJ sjunoy) “Isquinu gJ Y], wnujt 0 10809ur Suof IoquInu-jt

(0 woy 3urjre)s) Tequnu uoijeISIUL BT, 0 I089qur Suo| uorjeigfojur

*AMOT 10 HOHIH 1oyie Ajjueriny) ‘[eo jo odA) oy, 3uinys odAyres

JJO sem 11 9SIMISYJO ‘uo sem [ed ayl (1) anig JI 1eo 0 Io8ogur Suof 23e)sTIRD

978)S 9OUDIDJAI O} ISTMIDYI0 ‘91e)s [euSts oy st siyy (1) anig JI 31s T 1980gur Suof 99e)s~318

‘oanpooolad siy) SULINP pasn aweyds [RUIIS JUIYDIIMS JY], 3utrys S1sTyoyms

roanpoooad siy) Surmp posn Suryoyims jo adAy oy, Jutrys 99R1STYIIIMS

(eanpoocoid) ueos siyy 10j pajoadxe suBOSqNS JO IOQUINU [BIO], 1 Io8oqur Suof oz1sooad

2Inpoadoad SUIAISSQO 99 JO WRU O T, aanpoadoad Jurgs aanpadoad

Iequnu 9ouenbas sinpesoid oy, ubasooad 0 1980gur Suoy ubasooad

Isqunu ueds oY J, ueos 0 Ie89qur Suoj IoquInu-ueds

p1 g00loag joofoad Surigs pifoad

oweu S I9AI0Sq() Jurgs IOAIOSqO

owreu 92Inog 90Inos Surys 90In0s

“eRp 9Y) JO sjUN Oy, SjUNOd Surys spun

‘sanjeA rvIep 193 01 PaduUaIajel-op 9q IsnJy ‘Aelre ejep o], 0 Aeare jyeopy 0} 1ejurod 1yd-eyep

uo13d11osa(] Xopuj ey odAfT, sure N

“Kouenbaiy o11yuenodo) e sAeme ST pur pRY
Aouenbaaj poAIasqo o) Aq USAIS ST ssedpurq 9} JO I9juad o) Je Aouenbaij oy, '9jels Suryolms pur sidures jer) I0J UONRISSIUL 9UO 0} SPUOdSaLIOd
sAeIIe 991} UT JUOUISd YoRY "ARIIR R)RP T} S® OUIES o1} ST SARIIR 991} JO 1O JO [I3uo] o1], "ARLIe ®Jep o1} 0} UOTHIPPR UI (9J8)SJOINS PUR TOIYRAI[d
‘inurize ‘48] ‘stxeTopnjIie] ‘SIxe opnjIsuo] ‘plur ‘0 ‘oyep) sAeire ol sivjuiod [RISAGS SUTRIIOD (] WNNUNUOD oY) ‘(] oul] [eioads o) oI}

"S9[QIIACIS UO PO[opom A[9SO[O SI 3] "ISUIRIUOD ©jep WNNUIFUO0D 9T} JO SJUIU0D Y} SAQLIISAP d[(e) SUIMO[[O] oY T,

Jourejuo)) ejye(WNNUIUO)) aYJ Jo syudjuo) (J

38

“UOT}09[98 I0] S[qe[TeA® JOU SI PUR S XoPUI 8} Ul pajuasaidol jou ST P[oy ety ‘Yue[q ST AIyUd TapuJ a3 JT
‘pURIITOD S[O)SI] 9} AQ POUIN}OI SOUIRU 9} 918 9SOV, "O[[XopUl o} Ul AQq UMOUY SI P[AY YIed ey} SWRU) SMOYS UWN[Od TaPuUJ 3} ‘O[qe)} SIY} UJ

uoryisod puooses=71- ‘uorngisod jsig=7 ‘Suraomw=() ‘SUIPPOU I0D9PSIQNS UM d)R)S 10300[aIqng
‘SOIZOP Ul UOIJRISOIUT [[ORO 10J UOTJRAD[D O[T,

'S99I89p Ul UOI)RISOIUI (OB I0J [[Inwiize oy],

‘uorjedo[~991s pue Aerre plur o) Surpuodseriod spuodes .87

xouinbas

1€ 9POW~9)RUIPIOOD UI $92I30p Ul ‘UO0IRIZIUI oS e uor}dairp Surjurod opnjije| o],
xoutnba

7@ 9pPOW~9)RUIPIOOD Ul S92I130p Ul ‘UO0IjRIZOIUI Yord Je uoljoalrp Surjutod apnji8uol ayJ,
sAep ur uorjeirdajurl jo jurod-prua je 91e(] URIN[POYIPOIN

Aeare plu jo DI, 03 sSpuodsalio)) '9iep JO 3Ie)S 90UIS SPU0IAS DI,

uorpeI8ejul yoeo je plur 0y Surpuodserrod (on yjm Suore) (QA-ININ-AXAX) @red
‘sIoquINu ueds pajeodold oIe 9I9Y} USYM UOIJOQ[9S BIRP Ul POsn oq Ued SIYJ,
'SSTNINHH A NNTAXAAA U9} Sem 41 Udym ueds oy 0} UsAls durejsowury oy,
9lY SLIA OD oY) WO 'SIXe 9pnjIje| Se WojsAs 9)eUIPIOOD dwIes o1} Ul

sea18ep ur uoryoaaip Surjuiod epniige] (92Inos) 10818 oY,

9lY SLIA OD oY) WO "SIXe opnjisuo] se wojsAs 9JeUIPIOOd duIes o) Ul

$00130p ur uorjoaaip Surjutod apnyiSuo] (90inos) je81e) O J,

"LAAVD ‘T3 ‘¥ 8o ‘ejerrdordde uaym we)sAs 9)eUIPIOOD [elI03NDD Oy T,
-orerrdordde uoym ‘senyea sixe oapnjije] pue opnji8uol oy} jo ‘sreak ur ‘xournbe ot T,

T

00

00

QW) JUOLIND WOIJ

00
00
U} PUe 9)eP JUSLIND WOI}

oI} JUSLIND
91ep JUSLIND

dureysowury jnejep
1e181) 0°0
Suo381y 00
oA

0°0002

Aeire
Aeire
Aeire
Aeire

Aeire
Aeire

Aeire
Aeire

1089qur 09 1ejurod
a[qnop 03 1ejurod
a[qnop 03 r1ejurod
s[qnop 03 Iejurod

s[qnop 03 1ejurod
a[qnop o3 r1ejurod

s[qnop 03 ejurod
s[qnop 03 1ejurod

Aeire Suriys o} rojurod

Surnys
srqnop
srqnop

Surnys
|rqnop

91e)STJoIqNS
TOI11RAD[D
yynurize

98]

sIxXe-opnjiye|
sixe-opnjrsuo|
plur

ogm

ajep

dureysowury
opnjiye[-jesrey
apnjrSuor jeSie)

sAsopel
xouinbes

39

E More about Flagging Data

This section provides more information and examples about flagging.

When data requires flagging, an iterative approach to reduction is often useful. Here is one approach:

1. Calibrate the raw data.
2. Examine the calibrated data and determine whether any flagging is required to improve calibration.
3. If necessary, flag the offending data and return to step 1.

4. Write a new SDFITS file with calibrated data. In general, the new SDFITS file should contain an
entry for each integration that will be considered as a candidate for the average.

5. When all data are calibrated and written to disk, specify the calibrated data file as the new source
of input.

6. Again examine the data and use the flagging procedures to mark residual bad data to exclude from
the average.

7. Average the data.

8. Examine the average and, if necessary, return to step 1 or step 5 and modify the flagging commands
as necessary.

9. Proceed with analysis of the averaged spectrum.

Because of the iterative nature of the process, it is common to set and then unset flagging commands for
a given data set. It is important to emphasize that blanked data are not recoverable without going back
to data retrieval, but flagged data are recoverable. Flagging (setting flag rules) allows you to iteratively
decide which data should be blanked during processing.

Data can be flagged either by specifying scan number, integration number, polarization number, IF
number, feed number, and channel number, or by specifying the record number (location within a file)
and channel number. It is permissible to mix these two methods in a single flag file, if desired. The data
I/0 system in GBTIDL applies the flags, blanking data as appropriate (some control over which flags
are applied is possible, as described later in this document). Averaging, analysis, and display procedures
in GBTIDL take the appropriate action when blanked data are encountered.

Flagging is intended mainly for uncalibrated and pre-averaged data. However, it is not forbidden to
flag calibrated, averaged data. Use caution in such cases because the header parameters used in the
parametrization of flags can be changed during averaging operations. For this reason, when flagging
averaged data it is generally best to flag by record number. Flagging by record number also offers a finer
level of detail. The select procedure can be useful in conjunction with flagging by record number when
the normal flag procedure isn’t sufficient (this is described in more detail later in this section).

In the iterative flagging scheme outlined earlier in this section, flagging in Step 3 should be parametrized
by scan, polarization, etc. while flagging in step 6 should be parametrized by record number.

E.1 Using Flags in GBTIDL

Flag rules (flags) can be set from the command line with the procedures flag and flagrec. These
procedures generate entries in the flag file associated with the current SDFITS file. The flag procedure
has the following syntax:

40

flag, scan, intnum=intnum, plnum=plnum, ifnum=ifnum, fdnum=fdnum,
sampler=sampler, bchan=bchan, echan=echan, chans=chans,
chanwidth=chanwidth, idstring=idstring, scanrange=scanrange, /keep

and the flagrec procedure has the following syntax:

flagrec, record, bchan=bchan, echan=echan, chans=chans, chanwidth=chanwidth,
idstring=idstring, /keep

One uses idstring to associate with a rule an identifying string that is typically a reminder of the reason
for the flag.

Examples:

The following example shows how to flag a channel range for a small number of scans and
integrations. Note that either the scan parameter or scanrange keyword is required but
both can not be used at the same time. For the other parameters, if they are not specified,
“all” is assumed. So in the first example, all polarizations are flagged. Also, notice that
the integration numbers specified are 1 AND 3, not 1 through 3. To select a range, use
intnum=([1,2,3] or intnum=seq(1,3) (the first example specifies all of the integrations to be
flagged as integers, the second generates that sequence of integers using the ”seq” function).

flag, [18,19,20], intnum=[1,3], bchan=512, echan=514, idstring="RFI"
Equivalently, using the scanrange keyword:

flag, scanrange=[18,20], intnum=[1,3], bchan=512, echan=514, idstring="RFI"
To flag all channels for a given integration in one scan:

flag, 15, intnum=3, idstring="spectrometer glitch"
To flag all data for the given three scans:

flag, [101,105,107]
To flag a record in a processed data file (a keep file):

flagrec, 15, idstring="Glitch", /keep
To flag two channel ranges in a given scan you could do this:

flagrec, 16, bchan=0, echan=10, idstring="Two RFI Spikes"
flagrec, 16, bchan=100, echan=110, idstring="Two RFI Spikes"

or abbrieviate it like this:
flagrec, 16, bchan=[0,100], echan=[10,110], idstring="Two RFI Spikes"
The next example flags uses chans and chanwidth to flag the same channels:
flagrec, 16, chans=[5,105], chanwidth=11, idstring="Two RFI Spikes"

The select procedure can be used along with flagrec to provide even more flexible flagging.
In this example, the “RR” polarization of IF number 3 for all data with the source name
“Orion” is flagged in channels 500 to 520:

emptystack ; Clear the stack first
select, source=’0Orion’, polarization=’RR’, ifnum=3 ; Populate the stack
flagrec, astack(), bchan=500, echan=520, idstring=’RFI-Orion’

Note that there may be more than one flag associated with a given idstring. If idstring is not specified
in the flag or flagrec calls, it defaults to the string “unspecified”.

41

E.2 Using Flags in Data Retrieval and Averaging Procedures

Flags are applied by the data I/O subsystem when data are retrieved from disk. All of the data retrieval
procedures in GBTIDL (including calibration procedures such as getnod and getfs that do data retrieval
as part of their operation) use the I/O subsystem, so flags are applied whenever you get data from disk.

All of these procedures allow you to fine tune which flag rules are actually applied via the useflag and
skipflag keywords. The default is to use /useflag, meaning that all flag rules are applied. You can turn
off all flagging by using /skipflag. In that case, no data will be blanked by the data retrieval process.
You can also apply or not apply some of the flags by referring to them by their idstring. You can not use
both the useflag and skipflag keywords in the same call. Unlike unflag, the data retrieval commands
do not allow you to skip or use flags based on their ID number - only the idstring can be used as an
argument to these keywords.

Examples:
getnod, 15 ; Apply all flags
getnod, 15, /skipflag ; Do not use any flags
getnod, 15, useflag="RFI" ; Only use the "RFI" flag
getnod, 15, useflag=["RFI","wind"] ; Use "RFI" and "wind" flags only
getnod, 15, skipflag="RFI" ; Use all flags EXCEPT "RFI"

All of the standard procedures in GBTIDL that in turn use these procedures also have the useflag and
skipflag keywords.

E.3 Listing Flags

Use listflags to list all of the flags for the current data file, or only those flags having a specific idstring.
The default listflags output shows all flags in their entirety, but the format sometimes is difficult to
read. Appending the /summary keyword to listflags aligns the columns but in order to do that, it may
truncate the information in a particular column and so not all information may be shown.

Examples:
listflags, ’RFI’ ; Shows the flag information associated with the ’RFI’ idstring
listflags, /summary ; Shows all flags with the information aligned by column

To list all of the unique idstring values in the flag file use the listids command.

Example flag lists:

If one executes the flagging command:
flag, [35,36,37], intnum=[1,3], bchan=512, echan=514, idstring="RFI"
the listflags output will look like this:

#ID, RECNUM, SCAN, INTNUM, PLNUM, IFNUM, FDNUM, BCHAN, ECHAN, IDSTRING
0 * 35:37 1,3 * * * 512 514 RFI

The first line of the output identifies the contents of each column. Most of these fields are
self-explanatory. The first field is an ID number that is assigned dynamically and is simply
the location of that flag rule in this list. The ID number can be used in the unflag procedure
to remove a flag rule.

Flagging a few more scans, not in a nice sequence:

42

flag, [40,42,44,47,48,50,56], intnum=[1,3], bchan=512, echan=514, idstring="More RFI"
adds one new line to the listflags output:

#ID, RECNUM, SCAN, INTNUM, PLNUM, IFNUM, FDNUM, BCHAN, ECHAN, IDSTRING
0 * 35:37 1,3 * * * 512 514 RFI
1 * 40,42,44,47,48,50,56 1,3 * * x 512 514 More RFI

And listflags,/summary truncates the output and produces the following:

#ID, RECNUM, SCAN, INTNUM, PLNUM, IFNUM, FDNUM, BCHAN, ECHAN, IDSTRING
0 * 35:37 1,3 * * * 512 514 RFI
1 % 40,42,44,+ 1,3 * * * 512 514 More RFI

Notice how the scan information is truncated. Fields that contain more information than
shown end in a plus sign, while asterisks indicate all values for that parameter are flagged
(as in the unformatted listflags output).

The second column, RECNUM, is set when flagrec is used. For example:

flagrec, 15, bchan=0, echan=8, idstring="bad channels"
listflags

#ID, RECNUM, SCAN, INTNUM, PLNUM, IFNUM, FDNUM, BCHAN, ECHAN, IDSTRING
0 * 35:37 1,3 * x * 512 514 RFI

1 % 40,42,44,47,48,50,56 1,3 * * * 512 514 More RFI

2 15 * * x *x *x 0 8 bad channels

E.4 Undoing Flags

If you would like to remove all the flags associated with a given SDFITS file, you can simply remove the
associated flag file and restart GBTIDL. Alternatively, flags can be unset using the unflag procedure.
The unflag procedure takes a single parameter, id, and it removes all flagging commands that have that
id, where id can either be a string matching an idstring value or an integer matching an ID number as
shown by listflags.

unflag, id

If you want to re-flag that same data, you have to reissue the flag or flagrec commands. The id
parameter can be either a scalar or an array, to unflag multiple entries at once.

Unflagging by ID number is simple and appealing but users should be familiar with the following very
important feature. Since the ID number is generated dynamically, it changes after each flagging-related
command, including the unflag command. Users should always use listflags before each use of unflag
to be sure that they are using the appropriate ID value. Consider this example:

listflags

#ID, RECNUM, SCAN, INTNUM, PLNUM, IFNUM, FDNUM, BCHAN, ECHAN, IDSTRING
0 * 35:37 1,3 * *x x 512 514 RFI

1 *x 40,42,44,47,48,50,56 1,3 * * x 512 514 More RFI

2 15 * * x *x * 0 8 bad channels

If you want to unflag the last 2 IDs, so you might (mistakenly) try the following:

43

unflag, 1
unflag, 2
% FLAGS::UNFLAG_ID: ID could not be found to unflag: 2

The error happens because the first unflag causes the remaining two flag rules to be renumbered to 0
and 1, and so there is no ID 2 to unflag any more. This would have been a more dangerous, silent error
had there been more than 3 rules to begin with.

The correct way to unflag the entries:

listflags
unflag, 1
listflags
unflag, 1

or:

listflags
unflag, [1,2]

E.5 Weighting Issues not Addressed by this Flagging Scheme

You should be aware of some potential issues with the weights when averaging flagged data.

Consider two reduced spectra, A and B, which resulted from an average of flagged data. In each of the
two spectra, the individual channels have been flagged to different extents, so the final noise in each
channel differs depending on how much of the raw data were flagged going into the average. For example,
channels 0-10 in A may have been heavily flagged prior to averaging, and so they contain a higher noise
than the other channels in A. If the observer then wishes to average A and B, the weighting in the average
will be wrong because relative weights have not been stored for these spectra on a channel-per-channel
basis.

F Other GBTIDL Features and Examples

F.1 Customizing the output of the list procedure

The list command can be used to view detailed information on records in the active input file. Because
this file contains a great deal of information, it is possible to request that the list command show only
that information of interest.

The following command shows how to create the sample data used in these examples:

% sdfits -mode=raw -scans=177:180 -backends=acs /home/archive/test-data/tape-0002/TREG_040922
Then to access this data in GBTIDL use this command:

filein, ’TREG_040922.raw.acs.fits’

In the first example, we list all the records, or spectra, currently found in the index file.

44

GBTIDL -> list ; Show a brief description of everything

#INDEX SOURCE SCAN PROCEDURE POL IFNUM FDNUM INT SIG CAL

0 W30H 177 0f£f0n XX 0 0 0 T T
1 W30H 177 0ff0n XX 0 0 0 T F
2 W30H 177 0ff0n XX 0 0 1 T T
3 W30H 177 0f£f0n XX 0 0 1 T F
4 W30H 177 0f£f0n YY 0 0 0 T T
30 W30H 180 0ff0n YY 0 0 1 T T
31 W30H 180 0f£f0n YY 0 0 1 T F
Next, we use a simple search parameter:
GBTIDL -> list, index=[0,1,2] ; Show a description of the first three records

#INDEX SOURCE SCAN PROCEDURE POL IFNUM FDNUM INT SIG CAL

0 W30H 177 0££0n XX 0 0 0 T T
1 W30H 177 0££f0n XX 0 0 0 T F
2 W30H 177 0££f0n XX 0 0 1 T T

To see all of information associated with these records, use the verbose keyword.

GBTIDL -> list, index=[0,1,2], /verbose

This will return the parameters:

INDEX, PROJECT, FILE, EXT, ROW, SOURCE, PROCEDURE, 0BSID, E2ESC, PROCS, SCAN, POL,
PLNUM, IFNUM, FEED, FDNUM, INT, NUMCHN, SIG, CAL, SAMPLER, AZIMU, ELEV, LONGITUDE,

LATITUDE, TRGTLONG, TRGTLAT, LST, CENTFREQ, RESTFREQ, VELOCITY, FREQINT, FREQRES,
DATEOBS, TIMESTAMP, BANDWIDTH, EXPOSURE, TSYS, NSAVE

Obviously, the above example is not best if you are only interested in the values of a few specific columns.
You can narrow the output like so:

GBTIDL -> list, index=[0,1,2], columns=["INDEX","INT","POLARIZATION"]

#INDEX INT POL

0 0 XX
1 0 XX
2 1 XX

The list command prints records in the order of the index number by default. This can be changed
using the sortcol keyword. Note that the full name of the column must be used.

GBTIDL -> list, scan=177, sortcol="INT" ; Sort by integration number

#INDEX SOURCE SCAN PROCEDURE POL IFNUM FDNUM INT SIG CAL

0 W30H 177 0££0n XX 0 0 0 T T
W30H 177 0££f0n XX
W30H 177 0££f0n YY
W30H 177 0££0n YY
W30H 177 0££f0n XX
W30H 177 0£f£f0n XX
W30H 177 0££0n YY
W30H 177 0££f0n YY

~N O WN O
O O O O O O O
O O O O O O O
H R B, R,O0OO0O0
L B B I I B B |
L I B B e B B |

45

The liststack command is identical to the list command except that it selects from records identified

by the stack.

GBTIDL -> select, scan=177 ; Place scan 177’s records on the stack
GBTIDL -> liststack, col=["INDEX","INT","CAL"], sortcol="CAL"

#INDEX INT CAL

1 0 F
3 1 F
5 0 F
7 1 F
0 0 T
2 1 T
4 0 T
6 1 T

F.2 Making postage stamp plots

In displaying PointMap data, or just for displaying multiple spectra, it can be convenient to display
spectra as postage stamp plots. GBTIDL currently does not have any inherent support for postage
stamp plots, but it is easy to use the IDL plotter to duplicate plots as one might see from CLASS, for

example.

For instance, a 3x3 PointMap might be stored as calibrated, reduced spectra in an SDFITS file, with

the first 9 records representing the map. These can be displayed in a postage stamp plot as follows:

filein, ’postage.fits’
freeze
'p.multi = [0,3,3]
for i=0,8 do begin & $
getrec, 1 & $
x = getxarray() & $
y = getdata() & $
plot, x, y, xstyle=1 & $
endfor
unfreeze

For more flexibility in plot placement, the position parameter can be used, as in the following procedure:

pro plotpos, x, y, Xpos, ypos, Xsize, ysize
if (n_elements(xsize)) eq O then xsize
if (n_elements(ysize)) eq O then ysize
freeze
plot,x,y,position=[xpos-xsize/2,ypos-ysize/2,xpos+xsize/2,ypos+ysize/2], $
/noerase, xstyle=1
unfreeze

1]
o O
=

end
The procedure might be used as follows:

erase
getrec,0
plotpos, getxarray(), getdata(), 0.5, 0.5, 0.25, 0.25
getrec,1
plotpos, getxarray(), getdata(), 0.2, 0.5, 0.25, 0.25

46

getrec,2
plotpos, getxarray(), getdata(), 0.8, 0.5, 0.25, 0.25
getrec,3
plotpos, getxarray(), getdata(), 0.5, 0.2, 0.25, 0.25
getrec,4

plotpos, getxarray(), getdata(), 0.5, 0.8, 0.25, 0.25

F.3 Example reduction sessions with sample data sets

This section describes a few sample data sets for users who may wish to experiment with GBTIDL but
who do not yet have any data to play with. You may wish to experiment with GBTIDL before you
have an appropriate data set of your own. With each data set is an example of how the data might be
reduced and analyzed in GBTIDL. The examples are simply guides, and there are many ways to reduce
the data in each case.

Example 1: HI Position Switched Data

This is a strightforward observation of HI in a galaxy, observed using position switching. The data set
is “clean”, so all the data can be included in the averaging. The example data reduction is terse in this
case, and aims just to produce an HI spectrum calibrated as antenna temperature (K). The RMS noise
and integrated flux density of the HI source are measured.

e Retrieve the data: ngch291 fits
(http://safe.nrao.edu/wiki/pub/GB/Data/GBTIDLExampleAndSampleData/ngc5291.fits)

e Example data reduction:

Get the data into GBTIDL and show a summary of the scans:

filein, ’ngcb5291.fits’
summary

Calibrate and accumulate the data for each scan, and for each polarization:

for i=51,57,2 do begin getps, i, plnum=0 & accum & end
for i=51,57,2 do begin getps, i, plnum=1 & accum & end
ave

Set a baseline region and subtract the baseline:

chan

nregion, [3300,14800,17900,31000]
nfit,3

sety, 0.2, 0.5

bshape

baseline

unzoom

Apply some smoothing, then measure statistics:

hanning,/decimate

bdrop, 2500

edrop, 2500

velo

stats, 2000, 3000 ; this gives the RMS: 13.5 mJy

stats, 3900, 4800 ; this gives the integrated area: 60.439 K km/s

boxcar, 8 ; more smoothing

http://safe.nrao.edu/wiki/pub/GB/Data/GBTIDLExampleAndSampleData/ngc5291.fits

47

Example 2: OH/HI Frequency Switched Data

This is a slightly more involved data set than the previous one. In this case, there are 2 spectral windows,
or “IFs”. One records the 1665/1667 MHz OH masers and the other records the HI emission toward
W3(OH). The data are frequency switched. This data includes some integrations in which there are bad
data, and so the observer must be careful to inspect and average the data selectively.

e Retrieve the data: W3OH.fits
(http://safe.nrao.edu/wiki/pub/GB/Data/GBTIDLExampleAndSampleData/W3OH.fits)

e Example data reduction:

Get the data into GBTIDL and show a summary of the scans:

filein, ’W30H.fits’
summary

Begin by visually inspecting the data. Note not all the data is “good” so we will need to be
selective in the averaging. The “wait” command simply pauses to give the observer a chance
to look at the data.

for i=79, 83 do begin getfs, i, plnum=1, ifnum=0 & wait, 2 & end

Zoom in to the baseline and repeat:

sety, -2, 2
for i=79, 83 do begin getfs, i, plnum=1, ifnum=0 & wait, 2 & end

Inspect individual integrations within scan 83. Note that within a scan some integrations
are good and some bad.

for i=0,5 do begin getfs, 83,intnum=i, plnum=1, ifnum=0 & wait, 2 & end

We must average only the good integrations. There are many ways to approach this problem.
It would be natural to use the flagging commands, but here we use a different method which
is terse but efficient. We loop through each integration of each scan, test the RMS in the
data, and accumulate only the good integrations. The use of freeze before the loop and
unfreeze after the loop speeds up the processing by turning off the automatic update of the
plotter after each getfs call.

velo

freeze

for i=79,83 do begin
for j=0,5 do begin
for k=0,1 do begin
getfs, i, units=’Jy’, intnum=j, plnum=k, ifnum=0 & $
stats,-3000,-2000,ret=a,/quiet & $

if a.rms 1t 0.5 then accum else print, ’Skipping’ ,i, j, k & $
end & end & end

unfreeze

ave

ISR S =
©® P P

The next example illustrates the flagging approach. The bad integrations are first flagged
and then the scans for ifnum=0 are averaged, using both polarizations. Note that the loop
over integrations can now be eliminated. The getfs command averages all integrations and
since the bad integrations are now flagged, they do not contribute to the average.

http://safe.nrao.edu/wiki/pub/GB/Data/GBTIDLExampleAndSampleData/W3OH.fits

48

flag, [80,82], intnum=[1,3], plnum=1, ifnum=0, idstring=’corrupt’
flag, 83, intnum=[2,4], plnum=1, ifnum=0, idstring=’corrupt’
listflags,/summary

freeze

for i=79,83 do begin & $

for k=0,1 do begin & $

getfs,i,units=’Jy’, plnum=k, ifnum=0 & $

accum & $

end & end

unfreeze

ave

Extract a region of interest:

chan

my_spec = dcextract(!g.s[0],7500,9500)
bdrop, O

edrop, O

show,my_spec
'g.s[0] = my_spec
show

Set the baseline regions using the mouse cursor and subtract a baseline.

sety, -0.2,0.4 ; Zoom in a bit
setregion

nfit, 7

bshape

baseline

Fit Gaussians to one of the maser complexes. Use fitgauss to specify a 3-component fit.

velo

setx, -60, -30
freey

fitgauss

Follow the instructions for fitgauss.

Example 3: H,O Total Power Nod Data

This data set contains an observation of a maser line, observed in total power nod mode. In the first
example below we show the simplest (but verbose) method to average and reduce the data. The second
example is more involved. We use the stack to gather the scans for averaging. We store the individual
scans in internal buffers, and display them all overlaid. Finally we average the data and write the final
spectrum to disk.

e Retrieve the data: 1C1481. fits
(http://safe.nrao.edu/wiki/pub/GB/Data/GBTIDLExampleAndSampleData/IC1481.fits)

e Simple reduction of this data set:

Get the data into GBTIDL and accumulate some of the data:

filein, ’IC1481.fits’
getnod, 182, plnum=0

accum
getnod, 182, plnum=1
accum
getnod, 184, plnum=0
accum

getnod, 184, plnum=1
accum

http://safe.nrao.edu/wiki/pub/GB/Data/GBTIDLExampleAndSampleData/IC1481.fits

49

The other scans can be accumulated similarly. Now, average the accumulated data and
fit a baseline.

ave
setregion
nfit, 3
baseline

e Alternative reduction:

Get the data into GBTIDL and show a summary of the scans:

filein, ’IC1481.fits’
summary

Clear the stack, then fill it with even scan numbers in the range 182-188.

emptystack

sclear

addstack, 182, 188, 2
tellstack

Now loop through each scan pair, retrieve the calibrated spectrum, accumulate it and
also store it in a memory buffer. The use of freeze and unfreeze before and after the
loop speeds up the processing by disabling the automatic update of the plotter after each
getnod.

freeze

for i = 0, !g.acount-1 do begin & $

getnod, astack(i), plnum=0, units=’Jy’, tsys=60 & accum & $
copy, 0, i*2+2 & $

getnod, astack(i), plnum=1, units=’Jy’, tsys=60 & accum & $
copy, O, i*2+3 & $

end

unfreeze

ave

Fit a baseline:

setregion
nfit, 3
bshape
baseline

Smooth the spectrum, then save it to disk.

hanning, /decimate
fileout, ’saved.fits’
keep

Create a plot showing each individual spectrum (2 polarizations per scan pair) on a
single plot, with offsets to make it easier to see the spectra:

copy, 2, O

baseline

show

copy, 0, 2

freeze

for i=3,9 do begin copy, i, O & baseline & bias, float(i-2)*0.2 & copy, O, i & end
show, 2

unfreeze

for i=3,9 do oshow, i, color=!red

20

G Reducing Continuum Data

Limited processing of continuum data is available in GBTIDL. The cont procedure is used to switch to
continuum mode. Continuum data comes from a separate file (also opened with filein) and there is a
completely separate set of data containers in !'g for holding continuum data (!g.c) . Continuum data
can only be displayed with the x-axis as sample number (you do not need to do anything other than
show to make that happen). There is currently no ability to save continuum data containers to disk, so
the continuum functionality is rather limited. Many routines simply refuse to work with continuum data
(e.g. getfs). However, the data is available in GBTIDL and so some work can be done with continuum
data. Use the line procedure to switch back to spectral-line mode.

H More Information

H.1 Contributing Procedures

GBTIDL is intended to be built and expanded by the user base — that’s you! To contribute a procedure
to GBTIDL, send it by email to Jim Braatz at jbraatz@nrao.edu.

Visit the Contributed Code Reference
(http://wwwlocal.gb.nrao.edu/GBT/DA /gbtidl/release/contrib/index.html) to see what user contribu-
tions are available.

Before you contribute a procedure it should be thoroughly tested. Be sure it includes parameter checks.
Please document the procedure in comment lines at the top of the file, include examples of how to use
it (if appropriate), and include your name and email address if you’d like credit for your hard work.

H.2 Bugs and Enhancements

Visit the bug submission page | at http://gbtidl.nrao.edu on the GBTIDL home page. You need not be
registered on Sourceforge to submit a bug or enhancement request. Past submissions can be tracked
from the Sourceforge pages.

H.3 General Hints and Tips
H.3.1 Calibrating Data

One strategy in using GBTIDL is to first calibrate your data using a procedure in the (getfs, getnod,
getoffon, ...) family, and then write the calibrated data to a new SDFITS file. Once the data are in the
new file, the calibrated scans can be retrieved with the getrec procedure, and tools such as the stack
and select and find can be used to access data groupings.

H.3.2 Recovering from Errors

In GBTIDL, when an error is encountered you are sometimes left at the “procedure level” and not the
“main level” of the command line interface. GBTIDL will not work at the procedure level. To return
to the main level, use the command “retall” and GBTIDL will resume. IDL users, in general, type
“retall” often. This should only happen rarely in GBTIDL. If you find that it happening unexpectedly
or frequently, please let us know.

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/contrib/index.html
http://gbtidl.nrao.edu/bugs.shtml

o1

H.4 GBTIDL FAQ
H.4.1 Do I need to know IDL to run GBTIDL?

No, but it helps. The GBTIDL syntax is similar to UniPOPs and it is possible to reduce many types
of observations without much previous IDL knowledge. The GBTIDL User’s Guide shows you how.
However, if you’d like to go beyond the standard reduction facilities provided, some IDL knowledge is
required. If you are not familiar with IDL and would like to learn, you may find the IDL primer useful.
Links to a few primers can be found in section 1.6.

H.4.2 What is the latest version of GBTIDL?

Version 2.8 was released on June 1, 2011. It is available as gbtidl for all users in Green Bank, Char-
lottesville and Socorro. It can be downloaded from the GBTIDL home page.

H.4.3 What version of IDL is required to run GBTIDL?

GBTIDL runs on version 6.1 or later. It does not run on earlier version of IDL.

H.4.4 Everything was working fine, then I encountered an error and now GBTIDL is not
working. How do I recover?

Try “retall”. The error handling mechanism in IDL leaves you at the “procedure level” after an error
is encountered. GBTIDL runs at the “main level”. To return to the main level, use the IDL command
“retall”.

H.4.5 The plotter is not responding, how do I recover?

Try “retall”. If you can’t change the x-axis units, or print, or otherwise interact with the plotter
graphically then the most likely explanation is that there was an error at the “procedure level” and IDL
is not at the “main level”. IDL only processes these GUI events when it is at the “main level” so when
an error occurs, the plotter appears unresponsive.

H.4.6 I have a collection of IDL procedures. Where should I put them so that I can use
them in GBTIDL?

The current directory is always searched first by IDL for files to compile. If you always run GBTIDL
from the same directory, it is simplest to put your .pro files there. If you run GBTIDL from different
directories and you want to collect your .pro files all in one place, place them in $SHOME/gbtidlpro.
GBTIDL includes SHOME/gbtidlpro at the head of the search path (after the current directory). So,
any files you put in SHOME /gbtidlpro and in any subdirectories under SHOME /gbtidlpro will be found -
even if a duplicate named file exists in the GBTIDL installation. $HOME /gbtidlpro could be a symbolic
link to any other location.

H.4.7 How do I change the Y-axis label?

There are a few ways:

1. When you get the scan, use the unit specifier. This will automatically scale the spectra to the
new units.

http://gbtidl.nrao.edu/

92

getfs, 79, units=’Jy’
show ; If auto update is off

2. Set the units field in the data container:

!g.s[0] .units = ’Flux Density (mJy)’
show

3. Use the predefined units :

If !g.s[0].units is ’Jy’ then label is ’Flux Demnsity (Jy)’

>Tax’ ’Antenna Temperature (Tax)’
’Ta’ ’Antenna Temperature (Ta)’
empty ’Intensity’

’any other string’ ’any other string’

4. This technique is not recommended because the string is not saved with the data (it only affects
the current contents of the plotter), but this will also change the y-axis label:

show
(getplotterdc()) .units = ’Flux Density (mJy)’
reshow

H.4.8 Can I use GBTIDL with data from telescopes other than the GBT?

If the data are in UniPOPS format you can use the uni2sdfits procedure (see details at the end of this
answer). Otherwise, GBTIDL provides no tools for converting data from other telescopes. However,
with a little work on your part, it should be possible to get spectral line data from any other telescope
into GBTIDL. There is even some chance that if your data follow the SDFITS convention that GBTIDL
will be able to read it directly.

The easiest way to import generic data into GBTIDL is to use standard IDL tools to get the data into
a data container, as described below. You can then use GBTIDL to operate on data in data containers,
and you can save the data containers to SDFITS format as well.

A data container is just an IDL data structure with a predefined format. See the ‘About Data Containers’
section for a discussion about data containers in GBTIDL.

You can get data into a data container as follows:

Read your data values into an IDL array (e.g. use READU to read unformatted binary values or
mrdfits to read FITS tables, or import the data from an ASCII file using readf)

Create a new data container to hold those values: dc = data_new(myvalues)

Set the associated header fields in dc, for example:

dc.source = ’mysource’
dc.scan = 24
dc.coordinate_mode = ’J2000°

Copy dc to the primary data container:

set_data_container, dc

93

e Save it to an output file:

fileout, ’myfile.fits’
keep

e Free the memory used by the data container:
data_free, dc

e When you return to look at this data in a later session, you can load it into GBTIDL directly from
the SDFITS file as follows:

start a new GBTIDL session first
filein,’myfile.fits’
getrec, O

Pointers:

e When setting the header fields in dc, pay particular attention to those related to the frequency
axis and its conversion to velocity.

e If you are going to be using set_data_container repeatedly, use freeze to speed up the operation.

Please|contact us with any questions about the contents of the data container or other aspects of GBTIDL
necessary to do this translation. (However, please be advised that we have limited resources, and will
not be able to provide extensive development for reducing data from non-NRAO telescopes.)

As an example, the contributed procedure uni2sdfits uses an IDL class [sdd to read in the UniPOPS
binary file and then the above steps are used to copy it to the primary data container and keep it to the
output file. The source code can be seen by clicking on the “source” links at the top of the page in each
of the above two links.

H.5 Who Developed GBTIDL?

Bob Garwood, Paul Marganian, Jim Braatz, Nicole Radziwill, and Ron Maddalena, all of NRAO.
Significant contributions have come from many others, especially: Tom Bania (BU), Phil Jewell (NRAO),
Frank Ghigo (NRAO), Glen Langston (NRAO), David Fleming (UIUC), and Tim Robishaw (Berkeley).

H.6 Installing GBTIDL on a Mac

The standard GBTIDL installation instructions should be followed. The NRAO does not have a standard
Mac installation or centralized support for Macs and NRAO Macs do not have GBTIDL installed on
them in a standard location. The following troubleshooting tips may be helpful in setting up GBTIDL
on a Mac:

e Make sure that the complete path name of IDL is set early on in the “gbtidl” startup script.
It should look something like this (replace my_path_for_idl with the appropriate path on your
Mac):

LOCAL_IDL=/Applications/my_path_for_idl/idl

e Make sure “idl” itself is properly installed on your Mac.

http://gbtidl.nrao.edu/contact.shtml
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/contrib/contrib/uni2sdfits.html
http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/release/contrib/contrib/sdd__define.html

o4

e Make sure your path includes “idl”. When you type “id]” at the command prompt, the ITT Visual
Information Services program should start (RSI on older versions of “idl”), not some other Mac
program (there is a code utility also called “id]” that appears on some Macs). If you do not see
the expected “idl”, then set your path appropriately.

e If you are running on an NRAO computer or some other system using shared licenses, make sure
you have license access set up properly.

e You should set your PATH variable to include the gbtidl executable. Assuming you have the
“gbtidl” script in the directory called /Users/my_account/GBTIDL then a line like this in your
.bashrc file would accomplish that:

export PATH=$PATH:/Users/my_account/GBTIDL

Index
Accessing SDFITS files,

accum, [40]

clearannotations,

clearfind, [19] [26]

accumbuf, [3]] clearmarks, [T§]
acount, [31] clearoplots,
add, [9] clearovers,

addstack,

aligning spectra
fshift, B2
gshift,

annotate, [I7] [I§

annotatecolor,
ap_eff,
appendstack, [I8] [I9]
ascii, [17]

astack,

AU,

ave, [21]

averaging data,

avgstack, [19] 22]

clearvlines,

click,

clip, 27]

colorpostscript,

colors
annotations, [31]
crosshairs,
Gauss fit text, [3]]
gshow,
highlights,
markers,
oplots,
oshow, [3]]

postscript, [31]

azimuth, show,
vlines,

backend, [35] [37]
background,

bad data,
bandwidth,
baselines,
baselines
commands
baseline,
bshape,
modelbuffer,
nfit, 20]
nregion, [T9]
setregion, [20]

removing, [19] [20]

zlines,
zoom, [3]]

cont_filein_name, [31]
continuum data,

continuum data container,

contio, 31]

contributing procedures,
coordinate_mode, [35] [37]

copy, [
crosshair,
crosshaircolor,

data
averaging data,

bdrop, continuum data,

blanking data, data containers

boltz k, continuum data container, [§] [37} 50|

bshape, for expert users,

bugs, global data container, 0]
primary data container, [J]

¢, 3] spectrum data container,

cal, frequency switched data, [47] [48]

cal_sig, position switched data, [16]

cal_state, retrieving data

calibrating data, files, [7]

caltype, [35] [37] get, [[OHT2]

center_frequency, getrec, [T7]

centfreq, list, [7]

chan, select,

chantox, smoothing data

55

hanning smoothing, [49]

spectral line data, [I0] [I1]
statistics, [25]

total power nod data, [48] [A9]
data containers, [7]
data containers
add, [9]
array of,
changing contents of, E|
continuum data container,
copy,
divide, [9]
for expert users,
global data container,]
multiply, [0
operations, [J]
pointers,
primary data container, [8] [0]
spectrum data container,
subtract, [9]
data_copy,
data_free, [33] [34]
data_new, [33]
data_ptr,
date,
dateobs,
decimate,
delete, [19]
deselect,
dirin,
divide, [9]
downloading GBTIDL,

duration, [35] [37]

edrop,

elevation,
emptystack, [19]
enhancements,
equinox, [35] 37 3§
eqweight,

errors, [50]

eV2erg,

exposure, 12} B35 [37]

extension, [12]

fdnum,
feed, 12} [35] [37]
feed_num,
feedeoff,
feedxoff,
file, [IT}, [I2]

filein, [[43]
fileout,
files, [7]

fnc, [0 15 B2
finding data, [f]
fitgauss,
flag,
flagging data,
flagging data
commands
flag,
flagrec,
idstring, [40}
listflags,
skipflag, [1]
summary, 1]
unflag,
useflag,
flagging rules,
idstring,
listing flags, [1]
undoing flags,
using flags, [40]
weighting issues,
flagging data,
weighting issues, [3]
flagrec, [39] [40]
foreground,
frame_velocity,
freex,
freexy, [18]
freey,
freeze,
freq,
freq_switch_offset,
freqint,
freqres, [12]
frequency switched data, [47]
frequency switched track,
frequency_interval,
frequency _resolution, [30]
frequency_type, 35] [36]
frontend,
frozen,
fshift,

g structure, 3]
galaxy profile,
Gauss,
Gaussian profiles, 23]
Gaussian profiles
fitgauss,
gausstextcolor,
GBTIDL
code,
obtaining GBTIDL, [[
running GBTIDL, []]

56

starting GBTIDL, [3]
gbtoplot, [I§|
gconvl,
get, [T0HIZ]
getdata, [9]
getfs, [10]
getnod, [10]
getplotterdc,
getps, [10]
getrec, [12]
getsigref,
getxarray, [45], [0]
gift,
ginterp, [27]
global constants,
gmeasure, [27]
gmoment, [27]
gshift, 22]
gshowcolor,
gstatus,

hanning,

hanning smoothing,
has_display,

header,
highlightcolor, [3]]
histogram, [I§]
humidity,

IDL, 5]

IDL primer, [2]
idstring, [0}
if number,
ifnum,
index,

index file,]
instance, [11]

int, [12]
integration, [35] [37]
interactive, [31]
intnum, [TT]

invert, [27]
keep, 28]

keepints, [T1]
kget,
kgetrec,

latitude, [12]
latitude_axis,
light _c,
light_speed,

line, [37]

line frequency, [9]
line_filein_name,

line_fileout_name, [31]
line_rest_frequency, [30]
lineio,

lineoutio,

list, [7]

listcols, 25

listfind, [I9] [26]
listflags,
listids,

liststack,

location of data,
longitude, [12]
longitude_axis,
Ist,

m_e,

m_H,
markercolor,
mean_tcal,
mid, 55 B
modelbuffer, [20]
molecule,
molecules,

multiply, [0]

newt_g,

nfit,

nget, 28]

nmol, [32]

noclear, 2]

nregion, [T9] 3]
nsave, 12} 5 B3 B3 B3
numchn,

observed_frequency,
observer,

obsid,

offline, []

online, [3]

online data, [3]

oplotcolor,

oshow,

oshowcolor,

pe,

plank_h,

plnum,
plotter, [13] [L6] [17]

plotter
annotate, [I7]
Auto update,
freeze,
printing spectra, [I7]

screen, [I3]

unfreeze,

57

unzoom, [If]
writing out data, [I7]
zooming, [16]
zooming
freex,
freey, [I7]
setx, [I7]
setxy, [I7]
sety, [I7]
plotter_axis_type,
polarization, 37
polarization_num, [35] [37]
polfitrms,
polyfit,
position, [45]
position switched data, [46]
postage stamp plots, 5]
postscript, [I7]
power position switched,
power spectrum, [27]
powspec, [27]
pressure, [35] B7]
primary data container, [8] [0]
printer, [32]
printing spectra, [I7]
procedure,
procsequ, [12} 35 7]
procsize, [35] [37]
project, [12]
projid,

quiet, [TT]

rad_sig,
radesys, [35] [37]
recomball, [27]
recombc,

recombh,
recombhe,

recombn, [27]

recombo, 27]

record number,
recovering from errors,
reference_channel,
reference_frequency, [35] [36]
regionboxes, [31]

regions, [31]

removing baselines,
replace,

resample,

restfreq, [12]

retrieving data, [I0} [[2} 27]

retrieving data

files, [7]

get, [10] [TT]
getrec, [I2]
kgetrec,

list, [7]
retrieving data,

kget, [29]
row, [I2]

BT
sampler,
sampler_name, [35] [37]
saving data,
saving data

fileout,

keep, 2§

nsave, [2§]
scan, [I2]
scan_number,
scanrange, [40]
sclear,
SDFITS, [, [l 3]

SDFITS access, [4]
SDFITS files,
select,
select procedure,
set_data_container, [33]
setabsrel, [I§]
setdata, [9]
setfind,
setframe,
setmarker, [1§
setregion, [20]
setveldef,
setvoffset,
setx, [I7] [I§]
setxunit, [T§
setxy, [I7} [I§]
sety, [I7] [I§]
show,
showcolor,
showregion,
sideband, [35] [37]
sig, [[2]
sig_state, 35} [37]
site_location,
skipflag,
smoothing data, 22|
smoothing data
hanning,
smthoff,
source, [12} 35 [37]

source_velocity, [36]

spectral line data, [I0] [IT]
spectrum data container, |§_5|

58

sprotect, [3]]
sprotect_off, 2§

sprotect_on, [2§]
srfeed,
stack,

stack
addstack, [I§]
appendstack,
emptystack,
starting GBTIDL,
statistics, 25]
stats, 24} [25]
subref_state,
subtract, [J]
summary, [6} [41]
switch_sig,
switch_state, [35} [37]

table,
tambient, [35] [37]

target_latitude, [35] [37]
target_longitude,

tau0, 32

teal,
telescope,
tellstack,

timestamp, [TT}, [T2] [35] [36] [38]

toggleovers,
total power nod,

total power nod data, 48] [A9]

total power track, [10]

transition frequencies, [27]

trgtlat,
trgtlon,

truncating spectrum, @

tsys, [L1} [T2} 35, B7)
tsysref, [35] [37]

unflag,
unfreeze,
units, 35} 37}, 62
unzoom, [I6} [I§]
usage, [I§

useflag,
user_list_cols,

utce, 35} 37, 38

velo,

velocity,

velocity _definition, [36]
verbose,

version, [31]

vlinecolor,

vshift,

write_ascii, [I7} [I§]
write_ps, [I7} [I§

writing out data,
writing procedures,

xshift,
xtochan,

zero_channel, [35]
zline,
zlinecolor,
zoomcolor,

zooming, [16]

zooming
freex,
freey,
setx, [I7]
setxy, [I7]
sety, [I7]

59

	Introduction
	How To Use This Document
	What is GBTIDL?
	Main Features of GBTIDL
	Where can I run GBTIDL?
	Obtaining GBTIDL
	User Documentation

	Quick Start Example of GBTIDL
	Getting Started
	Starting GBTIDL
	Getting Help with Commands

	Accessing Data Files
	Working Online
	Accessing SDFITS Data After an Observing Run
	Creating SDFITS Files
	Accessing SDFITS Files
	Accessing Multiple SDFITS Files Simultaneously
	Summary of the Location of Data
	Listing the Contents of Data Files

	Data Containers
	Overview
	Data Containers and Pointers
	About the Primary Data Container
	Examining and Changing Data Containers
	Data Container Operations

	Data Retrieval and Calibration
	Calibrating Data
	Retrieving Individual Records
	Getting Scan Header Information

	The Plotter
	GUI Features
	Auto Update (Freeze/Unfreeze)
	Zooming
	Printing Spectra and Creating Postscript Plots
	Generating ASCII Data
	Annotating the Display
	Other Plotter Procedures
	Colors

	Data Analysis
	Using the Stack
	Removing Baselines
	Averaging Data
	Averaging Data not Aligned in Frequency
	Smoothing Data
	Fitting Gaussian Profiles
	Introduction to Flagging and Blanking Data
	Statistics
	Using the Select and Find Features
	Select
	Find

	Mapping
	Other Analysis Procedures

	Saving and Retrieving Data
	keep
	nsave
	Retrieving Data from the Output File

	Writing Your Own Procedures
	The !g Structure
	Tips on Using Data Containers for Experts
	Contents of the Spectrum Data Container
	Contents of the Continuum Data Container
	More about Flagging Data
	Using Flags in GBTIDL
	Using Flags in Data Retrieval and Averaging Procedures
	Listing Flags
	Undoing Flags
	Weighting Issues not Addressed by this Flagging Scheme

	Other GBTIDL Features and Examples
	Customizing the output of the list procedure
	Making postage stamp plots
	Example reduction sessions with sample data sets

	Reducing Continuum Data
	More Information
	Contributing Procedures
	Bugs and Enhancements
	General Hints and Tips
	Calibrating Data
	Recovering from Errors

	GBTIDL FAQ
	Do I need to know IDL to run GBTIDL?
	What is the latest version of GBTIDL?
	What version of IDL is required to run GBTIDL?
	Everything was working fine, then I encountered an error and now GBTIDL is not working. How do I recover?
	The plotter is not responding, how do I recover?
	I have a collection of IDL procedures. Where should I put them so that I can use them in GBTIDL?
	How do I change the Y-axis label?
	Can I use GBTIDL with data from telescopes other than the GBT?

	Who Developed GBTIDL?
	Installing GBTIDL on a Mac

